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A B S T R A C T

The distribution of rock abundance (RA) on the lunar surface plays a pivotal role in understanding its geological 
evolution. This study focuses on the derivation of high-resolution RA data for lunar cold spot craters using Mini- 
RF (Miniature Radio Frequency) synthetic aperture radar (SAR) data. Firstly, terrain correction was applied to 
the SAR data. Secondly, the correlation between the Stokes parameters (S1, S2, S3, and S4) and RA was examined 
using optically-derived RA data, which aligns with the resolution of the Mini-RF SAR images. By plotting scatter 
diagrams showing the relationships between the Stokes parameters and the optically-derived RA, strong statis
tical associations were established. Finally, based on these findings, we formulated a regression-based RA-SAR 
model. This model was applied to other lunar cold spot craters in order to derive their high-resolution RA dis
tributions. The experimental results show that the model yields highly precise outcomes when validated against 
both Diviner RA and optical data. The study provides a new approach for inferring rock distribution across the 
lunar surface using SAR data, and offers valuable insights for advancing lunar geological research.

1. Introduction

Lunar craters are formed by the impacts of meteoroids, asteroids, or 
comets, causing significant changes to the lunar surface (Hörz et al., 
1991; McKay et al., 1991; Stöffler et al., 2006). As key geological fea
tures, craters have been a primary focus of scientific investigation (Head 
et al., 2010; Neish et al., 2014). Cold spot craters, in particular, represent 
a class of very young and fresh craters recently formed on the Moon, 
typically less than 3 km in diameter (Williams et al., 2018; Elder et al., 
2019). They are referred to as “cold spots” due to the presence of low 
thermal inertia in their surroundings, a property closely linked to rock 
abundance (RA), as large rocks have greater thermal inertia compared to 
fine-grained regolith (Bandfield et al., 2014; Elder et al., 2017; Hayne 
et al., 2017). Based on this principle, the Lunar Reconnaissance Orbiter 
(LRO)’s Diviner instrument has derived lunar RA data, which represent 
the fractional surface area covered by rocks (Paige et al., 2010; Band
field et al., 2011; Williams et al., 2017). Diviner can detect rocks larger 
than 1 m in diameter and provides relatively accurate RA data for cold 
spot craters. However, with a resolution of 240 m/pixel (Bandfield et al., 

2011; Paige et al., 2022; Powell et al., 2023), it is not suitable for 
detailed quantitative analysis of cold spot craters, most of which are less 
than 1 km in diameter (Williams et al., 2018). Therefore, 
higher-resolution RA data is needed to meet the requirements of scien
tific research.

High-resolution optical images can effectively provide RA data for 
cold spot craters. Optical data from LRO’s Narrow Angle Camera (NAC) 
can generate high-resolution RA data by aligning with Diviner rock 
abundance (Diviner RA), identifying and mapping rocks, adjusting pixel 
resolution based on Diviner’s pixel scale, and calculating the fractional 
surface area covered by rocks (Robinson et al., 2010; Wu et al., 2018; 
Wagner et al., 2024). Although this method can provide accurate 
high-resolution data, it is labor-intensive and inefficient, making 
large-scale applications challenging. Moreover, we have found that 
many cold spot craters on the Moon lack sufficient optical data.

To address this issue, this study utilizes synthetic aperture radar 
(SAR) data from the Mini-RF instrument aboard LRO (Nozette et al., 
2010; Carter et al., 2017). Given its sensitivity to surface roughness, SAR 
backscatter serves as an effective indicator of lunar rock abundance (Fa 
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and Wieczorek, 2012; Ghent et al., 2014; Gao et al., 2023). A 
high-resolution RA derivation model is developed based on Mini-RF’s 
polarimetric SAR data. By analyzing the relationship between 
high-resolution RA data derived from optical methods and Stokes pa
rameters, we establish an RA-SAR model. Mini-RF generates Stokes 
parameters (S1, S2, S3, S4) via polarimetric imaging, which describe the 
electromagnetic wave reflection properties of the lunar surface, offering 
a unique perspective for analyzing the physical properties of lunar sur
face materials (Raney et al., 2010; Neish et al., 2011; Calla et al., 2015; 
Huang et al., 2023). The Mini-RF operates at both X-band and S-band 
frequencies, with the S-band having a wavelength of 12.6 cm, which 
enables limited penetration into the lunar regolith. Previous studies 
have shown that Mini-RF can typically penetrate only a few centimeters 
to several tens of centimeters beneath the lunar surface, depending on 
the dielectric properties of the regolith (Nozette et al., 2010; Carter 
et al., 2012). Given this shallow penetration depth, the SAR signal is 
primarily influenced by the physical characteristics of the lunar surface. 
Therefore, rocks buried beneath the surface (including those in the 
near-surface and deeper layers) have minimal impact on the surface 
backscatter signal and can be considered negligible in this study. The 
RA-SAR model will be used to invert the high-resolution RA of cold spot 
craters on the Moon, providing new data to support the study of lunar 
surface material distribution and impact craters, as well as offering 
critical geological information for future lunar exploration missions.

The remainder of this paper is organized as follows: Section 2 in
troduces the data and fundamental theory used, Section 3 presents the 
proposed methodology, Section 4 details the experimental results, Sec
tion 5 provides the discussion, and Section 6 concludes the study.

2. Dataset and fundamental theories

The parameters of the LROC NAC data, Mini-RF SAR data, and 
Diviner RA data used in this study are presented in Table 1.

2.1. LROC NAC, Mini-RF SAR and diviner RA

The Narrow Angle Camera (NAC) onboard the Lunar Reconnaissance 
Orbiter Camera (LROC) consists of two cameras, NAC-L and NAC-R. In 
full-resolution mode, image data are composed of a series of continuous 
lines, with up to 52,224 lines and 5000 samples per line. The calibrated 
NAC image data are stored in 16-bit format, with an imaging altitude of 
50 km and a maximum resolution of 0.5 m/pixel (Robinson et al., 2010; 
Wu and Liu, 2017). This high-resolution imaging capability enables 
precise identification, mapping, and analysis of rocks on the lunar 
surface.

The Mini-RF instrument is a hybrid dual-polarization SAR that 
transmits circularly polarized electromagnetic waves while coherently 
receiving two orthogonal linearly polarized electromagnetic waves 
(Nozette et al., 2010; Raney et al., 2010; Cahill et al., 2014). The unique 
backscattering characteristics of blocky ejecta, such as rocks, result in 
strong echo halos in the SAR images of cold spot craters (Campbell, 
2012; Fa and Cai, 2013). The SAR data used in this study are presented 
in the form of Stokes parameters, which are calculated as follows. 
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Here, S1 represents the total power of the horizontal and vertical com
ponents, indicating the total backscatter intensity. It typically reflects 
the roughness and reflectivity of the target, making it the most directly 
indicative parameter of surface features in RA modeling, thus contrib
uting the most to the model (Raney et al., 2010; Carter et al., 2012). S2 
represents the differential power between the horizontal and vertical 
components, revealing the anisotropy and polarization characteristics of 
the target, which aids in distinguishing rocks from fine-grained regolith. 
S3 represents the real part of the complex correlation between the hor
izontally and vertically polarized components of the received signal, 
corresponding to the cosine of their average phase difference. S4 rep
resents the imaginary part, corresponding to the sine of the average 
phase difference. Together, these two parameters characterize the po
larization state of the backscattered wave (Raney, 2006, 2019; Kumari 
and Bhardwaj, 2020).

The Diviner instrument utilizes nighttime multispectral infrared 
observations to provide RA data through thermal emission measure
ments (Bandfield et al., 2011, 2017). Compared to the fine-grained 
regolith, rocks exhibit higher thermal inertia. Warmer rocks within Di
viner’s field of view cause an increase in the temperature of the short
wave channels, allowing the simulation of RA based on these 
temperature variations. As a result, multispectral observations can be 
used to infer sub-pixel RA at a resolution of 240 m/pixel.

2.2. Lunar cold spot craters

Cold spot craters represent a class of very young and fresh lunar 
impact features characterized by their distinctive thermal and radar 
properties. Fig. 1 shows a cold spot crater on the lunar surface.

Fig. 1b and c respectively present the optical and SAR images of the 
cold spot crater. In optical images, cold spot craters show a bright cen
tral region at the proximal area, while the distal region appears rela
tively darker. This contrast is due to the redistribution of surface 
materials caused by the impact, which alters the thermal and optical 
properties of the surface. In SAR images, the proximal ejecta of cold spot 
craters usually exhibit stronger radar backscatter, while the distal ejecta 
show relatively weaker returns. This backscatter pattern is related to 
differences in surface roughness and rock abundance caused by the 
impact event.

2.3. The ejection range of rocks

Fig. 2 presents a schematic diagram of the formation of a cold spot 
crater. For cold spot craters, which are exceptionally young and fresh, 
the RA in the surrounding area is primarily associated with exposed 
surface rocks, as the proximal ejecta layer’s rocks have not yet decom
posed or been buried (Elder et al., 2019). The extent of rock distribution 
is constrained by the local regolith thickness, as lunar regolith typically 
has a significant influence on the ejection velocity of bedrock fragments 
during impact events (Bart and Melosh, 2010a). Specifically, the pres
ence of regolith reduces the ejection velocity of bedrock debris, while 
the ejection velocity of regolith fragments tends to be higher, resulting 
in greater ejection distances. In contrast, bedrock fragments, produced 
by bedrock impacts, exhibit relatively lower velocities and shorter 
ejection distances. Most cold spot craters exhibit a bowl-shaped 
morphology, indicating that the impact angle is close to 90◦, which 
leads to a crown-like distribution of ejected rocks. Therefore, the ejec
tion range D of rocks produced by bedrock impacts at lunar cold spot 
craters can be determined (Fig. 2).

Table 1 
Parameters of the data used in this study.

Parameters Unit LRO NAC LRO Mini-RF Diviner RA

Incidence Angle Degree 43.4 52.1638 40–70
Wavelength μm/cm 0.4-0.76 (μm) 12.6 (cm) 13-400 (μm)

Resolution m/pixel 1.1 14.8 240
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Given that D is considerably smaller than the radius of the Moon, the 
ejection velocity of the rock is calculated here using the ballistic equa
tion of the object in the plane. The equation is as follows: 

f =
(

v2

g

)

sin(2θ) (2) 

where f represents the horizontal distance the rock travels, v is the 
ejection velocity of the rock, g is the acceleration of lunar gravity, and θ 
is the Angle of the ejection of the rock. It is assumed that each rock is 
thrown out at an angle of 45◦ from the horizontal line (Cintala et al., 
1978). This assumption is reasonable given that for major ejection flows, 
the ejection angle is typically close to 45◦ (with a range of ±15◦), and 
the dependence of the ejection velocity function on the ejection angle is 
weak in this range. Consequently, the equation is reduced to the 
following form: 

f =
v2

g
(3) 

It is not possible to assume that all rocks are ejected from the same 
radial position inside the crater, so a simple ballistic equation cannot be 

used to solve for velocity. Therefore, based on the scaling theory of 
impact crater formation (Richardson et al., 2005), the ejection velocity 
of bedrock is calculated. 
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where R represents the transient crater radius, the value is 0.85 of the 
final crater radius (Bart and Melosh, 2010b); ϵ denotes the material 
parameter, r is the crater radius as a function of time during the crater 
formation stage, and λ is the model parameter. Particularly, ϵ = 1.5, λ =

10 for basalt on the Moon (Housen et al., 1983).
The distance D from the rock to the center of the crater is equal to the 

radius of the crater plus the distance thrown by the bedrock. This can be 
express as follows: 

D = r + f (5) 

The approximate distribution range of rocks surrounding the cold 
spot crater can be calculated using the above Eqs. (2)–(5).

Fig. 1. The cold spot craters schematic diagram.

Fig. 2. Schematic diagram of the formation of a cold spot crater. In this illustration, a boundary between the fine-grained regolith and rocks is established, assuming 
that the minimum size of rocks considered is 1 m, with smaller rocks excluded. During the formation of the cold spot crater, r represents the crater radius, R is the 
transient crater radius, f is the distance the rocks are ejected, and D is the distance from the rocks to the center of the crater.
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3. Methods

In this study, a cold spot crater located in the lunar mare was selected 
as the experimental target, and the study area is shown in Fig. 3.

The study area, situated in the central part of Oceanus Procellarum 
and adjacent to the Herodotus crater, formed geologically between 
approximately 3.69 and 1.17 Ga (Hiesinger et al., 2003). This region has 
undergone multiple volcanic episodes, including at least five major 
eruptions (Zhang et al., 2024). The surrounding terrain, shaped by both 
volcanic and impact processes, exhibits characteristic features such as 
low albedo and high-Ti basalt distribution (Mustard et al., 2011), indi
cating a geologically complex and relatively young surface. These 
geological attributes provide valuable context for understanding the age 
and evolution of the study area.

3.1. Flowchart of the proposed method

The objective of this study is to derive high-resolution RA for other 
cold spot craters by establishing a relationship model between optically- 
derived high-resolution RA and SAR data. The flowchart of the proposed 
method is shown in Fig. 4. The first step involves data processing, where 
Diviner RA, NAC, and Mini-RF SAR data are pre-processed. Next, optical 
data are used to derive RA at a resolution consistent with Mini-RF SAR, 
and SAR data are used to calculate Stokes parameters. In the following 
step, correlation analysis is performed, and a model is established. We 
analyze the correlation between the high-resolution RA and Stokes pa
rameters and develop the RA-SAR relationship model based on this 
analysis. This model is then applied to derive high-resolution RA for 
other cold spot craters. Finally, the derived results are validated and 
analyzed through two methods. In Method 1, the high-resolution RA is 
downsampled to match the resolution of the Diviner RA for comparison. 
In Method 2, optical data are used for validation by randomly selecting 
regions, deriving RA for those areas using optical data, and then 
comparing the results.

3.2. Optical data processing

Before establishing the model, it is necessary to obtain RA data that 
matches the resolution of Mini-RF SAR. High-resolution RA is derived 
using NAC optical data, with a cold spot crater on the lunar mare 
selected as the derivation target. Following the method described above, 
the distribution range of rocks around the cold spot crater is calculated 
using Eqs. (2)–(5), resulting in a range of 3.05 km. In this study, the 
optical data used have a resolution of 1.1 m/pixel, which limits the 
ability to detect small rocks. To ensure reliable identification, only rock 
≥4 pixels in diameter were labeled. As a result, the labeled range is 
smaller than the theoretical value. As shown in Fig. 5.

3.2.1. Rock labeling and statistics
In this study, rocks within the determined distribution range are 

labeled. Using ArcGIS Pro software and NAC data, rocks surrounding the 
cold spot crater are identified and labeled, resulting in a total of over 
11,000 labeled rocks. The detailed processing workflow is illustrated in 
Fig. 6.

The labeled rock statistics around the cold spot crater are shown in 
Table 2.

The calculated extent of ejected rocks from the crater with sizes 
exceeding 1 m is 3.05 km, within which rocks are identified and labeled. 
Due to the limitations imposed by the resolution of the optical images, 
the final identified rock distribution is necessarily smaller than 3.05 km. 
In this case, the rock distribution extent labeled in the optical images is 
2.45 km, approximately two and a half crater diameters, consistent with 
the typical rock distribution range around craters of this type, which 
extends 2–3 crater diameters (Venkatraman et al., 2023). The discrep
ancy between the labeled range and the previously calculated ejecta 
range arises from the differences in rock size considered in each case. 
The ejecta range estimates the distribution of rocks with a diameter of 1 
m, while the labeled range includes rocks with a diameter of 4.4 m. This 
distinction is based on the resolution of the NAC data used, which is 1.1 
m/pixel. To minimize human error, only rocks with sizes greater than or 
equal to 4 pixels were labeled. Fig. 7 shows a diagram of rock labeling 
using NAC data and the results after co-registration with Diviner RA.

Fig. 3. The SAR data coverage area.
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3.2.2. Rock abundance derived from NAC
By using the resolution of Diviner RA as a reference, individual pixel 

units of RA were divided into smaller segments, and the rock surface 

area fraction within the processed pixel units was subsequently calcu
lated (Fig. 8). This method allowed us to obtain high-resolution RA data. 
We generated RA datasets at resolutions of 60 m/pixel (Fig. 9a) or 15 m/ 

Fig. 4. Flowchart of the proposed methodology.

Fig. 5. Cold spot crater required for optical derivation of RA. (a) A mosaic composed of two NAC images (M1191046036LE, M1191046036RE). (b) The Diviner RA 
(RA_SAM_70Sto70N.tif).

Fig. 6. The process of labelling rock.
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pixel (Fig. 9b), with Fig. 9b matching the resolution of the Mini-RF SAR 
data. This dataset will be utilized in the next step to establish the RA-SAR 
relationship mode.

The schematic diagram in Fig. 8 above illustrates the steps for 
deriving RA data at different resolutions generated by Diviner RA. Using 
the methods and labeled rock data in this diagram, we can calculate RA 
data at various resolutions for cold spot craters.

3.3. Perform radiometric calibration

The local incidence angle (LIA) variations and terrain-induced 
brightness fluctuations in SAR images can introduce errors in the cor
relation analysis. Due to the presence of crater walls, SAR data within 

lunar craters are significantly affected by topographic variations. In 
contrast, the terrain outside the crater is relatively flat, resulting in 
weaker topographic effects. The interior of the crater was not used in 
this study. To mitigate these effects, we adopted the terrain correction 
approach proposed by Huang et al. (2023), which compensates for 
incidence angle variations caused by topography based on DEM data. 
This method effectively reduces the influence of terrain effects on the 
Mini-RF SAR polarization parameters and achieves a relative decoupling 
between the two.

Specifically, the method calculates the LIA for each pixel using DEM 
data. First, the surface normal vector is estimated within a 3 × 3 
elevation window by fitting a local plane, and the angle between this 
normal and the radar incidence direction is computed to derive the LIA. 
All pixels are then grouped according to their LIA values, and the 
average SAR value is calculated within each LIA interval. This enables 
statistical analysis of the relationship between LIA and each Stokes 
parameter (S1–S4), and the derivation of their respective trends with 
respect to LIA. Finally, to further mitigate terrain effects, the method 
normalizes the observed SAR values by expressing them as deviations 
relative to the mean value within each LIA interval. This reduces the 
impact of incidence angle variations on SAR brightness and allows the 
SAR parameters to better reflect the surface scattering characteristics.

Following the application of the above method, the Mini-RF SAR 
data used in this study were radiometrically corrected to reduce 
brightness variations caused by local topography. Fig. 10 displays the 
resulting terrain-corrected SAR parameter images. Specifically, Fig. 10
(a1), (b1), (c1), and (d1) show the Stokes parameter images prior to 
terrain correction; Fig. 10(a2), (b2), (c2), and (d2) show the corre
sponding images after terrain correction. Fig. 10(a3), (b3), (c3), and (d3) 

Table 2 
Statistical information of the rocks.

Size [m] Cumulative number Cumulative number [km2]

4.4 5196 299.14
5.5 2583 148.75
6.6 1344 76.94
7.7 735 42.08
8.8 428 24.64
9.9 265 15.26
11.0 180 10.38
12.1 126 7.26
13.2 88 5.09
14.3 56 3.22
15.4 39 2.28
16.5 27 1.59
17.6 10 0.58
18.7 4 0.228

Fig. 7. (a) Is a schematic diagram of rock labeling, where the red circle indicates the labeled area and the yellow circle represents the distribution range of proximal 
rocks. (b) Shows an enlarged view of the rock distribution corresponding to the red box A in (a). (c) Presents the registration result between Diviner RA and NAC, 
focusing only on the proximal rock distribution around the crater. (d) Displays the result image after registration of the selected area.
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represent the near-crater regions, with the interior areas of the crater 
masked out. As shown in Fig. 10, the topographic effects on SAR 
brightness have been significantly mitigated.

3.4. Correlation analysis

Based on Sections 3.2 and 3.3, scatter plots between RA and the four 
Stokes parameters were generated. Different function forms were 
employed to fit the data, including linear, polynomial, and exponential 
functions, to model the relationship between RA and the Stokes pa
rameters, with the corresponding R2 values calculated for each fit. The 
optimal values were then selected, and Pearson correlation coefficients 
between the different feature parameters were computed to construct a 
correlation matrix. Finally, the weights of each Stokes parameter rela
tive to RA were determined, and a linear weighted regression model was 
constructed based on these weights. Table 3 presents the results of fitting 
the relationship between RA and the Stokes parameters using three 
different functions, along with their corresponding R2 values. Fig. 11
shows the scatter plots of the fitted relationships between RA and the 
Stokes parameters.

Here, we found that the R2 values for S1, S2, S3, and S4, when fitted 
with a linear function, were the highest, indicating the best fit. This 
suggests a linear correlation between RA and the Stokes parameters, as 
represented by the red line in the scatter plots in Fig. 11. Therefore, a 

linear function will be used to establish the relationship model between 
the two.

3.5. RA-SAR model construction

By analyzing the correlation between RA and Stokes parameters, the 
correlation matrix is constructed, and the results are shown in Fig. 12. 
The correlation matrix indicates a decreasing trend in the correlation 
between RA and the Stokes parameters S1, S2, S3, and S4, with S1 
exhibiting the strongest correlation (up to 0.91) and S4 the weakest 
(around 0.54). This trend is consistent with the polarization character
istics of electromagnetic waves.

Based on the correlation matrix, the R2 values of each Stokes 
parameter were normalized using Eq. (6), resulting in the calculation of 
the respective weights. These weights represent the relative contribution 
of each parameter to the RA. The RA-SAR relationship model was then 
constructed using Eq. (7). This method employs a multi-parameter linear 
weighted model, effectively integrating the influence of each parameter 
on RA. 

WSi =
R2

Si

R2
S1
+ R2

S2
+ R2

S3
+ R2

S4

, i = 1,2, 3,4 (6) 

RA = WS1 × S1 + WS2 × S2 + WS3 × S3 + WS4 × S4 (7) 

Fig. 8. Schematic diagram of calculating RA at different resolutions.

Fig. 9. (a) RA at 60m/pixel resolution. (b) RA at 15m/pixel resolution.
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Here, R2
S1

, R2
S2

, R2
S3

, and R2
S4 

represent the R2 values corresponding to 
each Stokes parameter, and WSi denotes the associated weights. There
fore, we employ this weighted model to derive RA (Eq. (7)), where WS1 , 
WS2 , WS3 , and WS4 values decrease sequentially. Given the SAR image of 
a cold spot crater, the Stokes parameters can be derived from the SAR 
image and then substituted into Eq. (7) to obtain the RA data for the 
crater.

4. Result

4.1. Flowchart of the validation method employed

This study validates the accuracy of the RA-SAR model using the 
flowchart in Fig. 13. First, RA is derived using the model, then down
sampled and compared with Diviner RA to obtain the first accuracy 
value. Second, the RA derived from NAC data is compared with the 

model-derived RA to calculate the second accuracy value. These two 
accuracy assessments together verify the reliability of the model.

4.2. Rock abundance derivation

To validate the accuracy of the model, two cold spot craters were 
selected as targets for RA derivation. The specific information about 
these craters is provided in Table 4. These two craters are representative, 
with diameters of 0.7 km and 0.43 km, making them suitably sized for 
detailed analysis at high resolution. This ensures that the model can be 
reliably applied across craters of varying scales. Additionally, the 
distinct cold spot characteristics of these craters facilitate the validation 
of the model’s accuracy in deriving RA.

The corresponding SAR images and Diviner RA images are shown in 
Fig. 14. Specifically, Figs. 14c–d display the RA maps of Crater A and 
Crater B, respectively, at a resolution of 240 m/pixel. However, due to 
the limited number of pixels, detailed quantitative analysis of the craters 
is not feasible.

Based on the aforementioned RA-SAR model, the high-resolution RA 
for Crater A and Crater B was derived. The results are shown in Fig. 15. 
The resolution of RA has been significantly improved, enabling more 
detailed observation and analysis of the rock distribution characteristics 
surrounding the crater.

Fig. 10. The terrain-corrected SAR image. (a1), (b1), (c1), and (d1) show the Stokes parameter images prior to terrain correction. (a2), (b2), (c2), and (d2) show the 
Stokes parameter images after terrain correction. (a3), (b3), (c3), and (d3) show the Stokes parameter images after registration, alignment, and cropping to match the 
spatial extent of the optically derived RA data.

Table 3 
The R2 values for the relationships between RA and the Stokes parameters were 
obtained by fitting linear, polynomial, and exponential functions, respectively.

S1 S2 S3 S4

RA (Linear Fit (R2)) 0.83 0.69 0.51 0.34
RA (Polynomial Fit (R2)) 0.7 0.63 0.5 0.27
RA (Exponential Fit (R2)) 0.67 0.58 0.48 0.26
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4.3. Diviner RA data validation

In this study, the derived high-resolution RA data were downsampled 
to match the resolution of the Diviner RA dataset, The down-sampling 
here is achieved based on the inverse process illustrated in Fig. 8. A 
row-priority comparison was then conducted between the two datasets. 
The comparison results are shown in Fig. 16c–g, where the blue line 
represents the Diviner RA and the red line represents the downsampled 
RA. Except for a few points, the differences between the two datasets are 
minimal (Fig. 16c and g). Fig. 16d–h shows the difference values be
tween the two datasets in Fig. 16c–g, respectively. The red boxed areas 
represent the crater interiors, where significant differences are observed. 
This discrepancy arises because the model does not incorporate infor
mation specific to the crater interior during construction, leading to 
notable differences in RA within the crater compared to Diviner RA. 
However, outside the crater, the differences are minor, indicating that 
the RA-SAR model provides a reliable RA derivation for cold spot 

craters.
Here, we use Eq. (8) below to evaluate the overall accuracy of the 

model-derived RA. 

Accuracyoverall =
1
N

∑N

i=1

(

1 −

⃒
⃒RAmodel,i − RADiviner,i

⃒
⃒

RADiviner,i

)

× 100% (8) 

In this, RAmodel,i represents the model-derived RA value for the i-th pixel, 
RADiviner,i represents the Diviner RA data value for the i-th pixel, and N 
denotes the total number of pixels. After calculating the accuracy for 
each pixel (excluding pixels within the cold spot crater interior), the 
overall model accuracy is obtained by averaging the accuracy values 
across all pixels. Using Eq. (8), the accuracy of the derived RA for Crater 
A and Crater B was evaluated, yielding results exceeding 90 % (Table 5). 
This indicates that the model achieves high accuracy in deriving RA for 
cold spot craters.

4.4. Optical data validation

To further validate the accuracy of the model, optical data was 
employed to verify the derivation results. Using NAC optical imagery, 
three random areas around Crater A and Crater B were selected. The 
rocks within the selected regions were labeled, and the corresponding 
RA was calculated. The calculated RA was then compared with the 
model-predicted RA for each respective area, and a detailed accuracy 
analysis was performed. The results are shown in Fig. 17.

In the three randomly selected regions, rocks in the optical images 
were labeled, and RA values were calculated. These values were then 
compared with those in the corresponding regions of the model-derived 
RA image. Using an approach similar to that in Eq. (8), accuracy metrics 
were obtained, as shown in Table 6. The high calculated accuracy in
dicates that the model demonstrates strong precision and reliability. 
Table 6 presents the results of optical validation. It was observed that the 
model’s predicted RA is more accurate in areas closer to the crater, while 
the accuracy decreases in regions farther from the crater. This trend 
aligns with the distribution pattern of rocks around cold spot craters, 
where rock density decreases with increasing distance from the crater 
center.

Fig. 11. Scatter plots between RA and Stokes parameters.

Fig. 12. Correlation matrix between RA and Stokes parameters.
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5. Discussion

Regarding the model’s effectiveness, we employed Mini-RF SAR data 
and established a high-resolution RA-SAR derivation model based on the 
correlation between the Stokes parameters and optically derived RA 
data. By comparing the model-predicted RA with the Diviner RA data, 
we observed a high degree of agreement. Compared to existing 

Fig. 13. The flowchart of model validation.

Table 4 
Information on the two selected cold spot craters.

Crater A Crater B

Latitude and Longitude 8.67N 45.06W 12.61N 45.14W
Diameter 0.7 km 0.43 km

Fig. 14. SAR data and Diviner RA data of Crater A and Crater B.
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derivation methods based solely on optical data, the RA-SAR model 
provides more convenient and detailed information on rock distribution.

In terms of error analysis, while the RA-SAR model performs well 
overall, certain sources of error remain. The resolution of SAR data 
limits the detection of smaller rocks, particularly at the edges of smaller 
craters (Liu and Jin, 2021). In validation against optical data, the 
complementarity between SAR and optical data becomes evident, as 
optical data provide more intuitive surface information.

As for the model’s limitations, although the RA-SAR model demon
strates excellent performance in cold spot crater derivation, its appli
cability has certain constraints. Specifically. 

1. The spatial resolution limitations of SAR data may result in inac
curacies in capturing fine-scale rock distribution features, thereby 
affecting the precise estimation of rock abundance.

2. The surface roughness and dielectric properties of the lunar regolith 
can also influence the SAR backscatter signal, leading to potential 
errors in the rock abundance estimation.

3. Due to the absence of sampling within crater interiors during model 
construction, combined with the interference from the complex 
topography of the crater walls, the SAR-derived rock abundance 
within the craters may involve relatively large errors.

4. Although the model performs well in estimating rock abundance for 
lunar cold spot craters, its performance may be less reliable for 
craters that are degraded or lack surface rock exposures.

In addition, the model’s accuracy may diminish in regions lacking 
significant thermal inertia features. Nevertheless, the high-resolution 
RA derivation presented in this study offers crucial data for under
standing the formation and evolution of cold spot craters. Especially in 
regions where thermal inertia features are closely tied to RA, accurate 
RA data can further elucidate geological processes on the lunar surface. 
Our model also lays the groundwork for future lunar exploration 

Fig. 15. High-resolution RA derivation results (15m/pixel).

Fig. 16. (a) and (e) represent the Diviner RA for Crater A and Crater B, respectively. (b) and (f) show the model-derived RA for the same craters. (c) and (g) present a 
row-priority comparative analysis between the Diviner RA and the model-derived RA for both craters. (d) and (h) represent the difference between these two 
datasets. The red boxes in (d) and (h) highlight the crater interiors.

Table 5 
Comparison of overall accuracy and RMSE between model-derived rock abun
dance and Diviner data.

Crater A Crater B

Model Accuracy 93.14 % 90.73 %
RMSE 0.0143 0.017
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missions, aiding in the identification and analysis of potential landing 
sites and scientific investigation targets.

6. Conclusion

This study established a high-resolution RA derivation model for 
lunar cold spot craters, based on Mini-RF SAR data and LROC NAC op
tical data. By analyzing the correlation between the Stokes parameters 
and optically derived RA data, we developed a robust RA-SAR model. 
This model allows for the accurate derivation of RA in other lunar cold 
spot craters. The results demonstrate that the linear regression model 
between SAR parameters and RA provides a reliable method for pre
dicting rock abundance in lunar cold spot craters. Our findings highlight 
the significant potential of using SAR data to infer surface characteristics 
in environments where optical data are limited.

Overall, the RA-SAR model opens new avenues for planetary surface 
analysis and enhances our understanding of lunar crater formation and 
evolution. Future work may focus on improving the model’s accuracy by 
incorporating additional data sources or extending its application to 
other planetary bodies. The methodology proposed in this study pro
vides a valuable framework for remote sensing research in planetary 

science, particularly for analyzing regions with complex geological 
features.

CRediT authorship contribution statement

Jiacheng Sun: Writing – original draft, Visualization, Validation, 
Software, Methodology, Formal analysis, Conceptualization. Xin Lu: 
Writing – original draft, Visualization, Validation, Resources, Data 
curation. Gaofeng Shu: Writing – review & editing, Writing – original 
draft, Supervision, Methodology, Investigation, Conceptualization. 
Zhengwei Guo: Writing – review & editing, Validation, Supervision, 
Data curation. Ning Li: Writing – review & editing, Validation, Super
vision, Resources.

Author statement/agreement

All authors have seen and approved the final version of the manu
script being submitted. They warrant that the article is the authors’ 
original work, hasn’t received prior publication, and isn’t under 
consideration for publication elsewhere.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The LROC NAC optical data and Mini-RF SAR data used in this study 
are publicly available from the Lunar Orbital Data Explorer 
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Table 6 
The accuracy evaluation results of RA for the randomly selected regions a, b, c, d, 
e and f using optical images.

The selected region of 
Crater A

Accuracy The selected region of 
Crater B

Accuracy

a 91.86 % d 92.25 %
b 89.11 % e 89.74 %
c 93.24 % f 90.12 %
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