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ABSTRACT. The lunar surface is characterized by numerous linear structures. Investigating
these linear features contributes to our understanding of the Moon’s cooling proc-
esses and the evolutionary history of its crust. Currently, most methods for extracting
linear structures from remote sensing images of the lunar surface rely on manual
visual interpretation and semi-supervised learning. This leads to inefficient extrac-
tion of these structures from the vast amount of lunar remote sensing data. We take
the typical lunar linear structure—lobate scarps—as a representative case and pro-
pose a semantic segmentation-based automatic detection algorithm. The proposed
model, based on Swin Transformer for semantic segmentation, integrates three
modules— long-connection Swin Transformer residual block, deformable pyramid
pooling module, and feature pyramid and aggregation network—to significantly
enhance the network’s capability in extracting features of lobate scarps. The model
is named STLDF-Net. Compared with other networks, STLDF-Net achieved the
highest accuracy on our custom dataset, with an intersection over union of 95.71%
and an F1-score of 97.81%. We applied the trained model to detect lobate scarps in
the Aitken crater region and the Ansgarius crater region, successfully mapping their
spatial distribution in these areas. In addition, we transferred the model to detect
lobate scarps on Mars, obtaining favorable results and demonstrating the model’s
strong generalization capabilities. Finally, we conducted experiments and discus-
sions on the model complexity of STLDF-Net, verifying its applicability for lunar
lobate scarp segmentation tasks.
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1 Introduction
The Moon is the closest extraterrestrial body to the Earth. According to their geometrical
features, lunar structures can be broadly classified into linear or circular structures.1 Linear struc-
tures are widely distributed on the lunar surface, with prominent linear features primarily located
on the near side of the Moon. A common type of linear tectonic landform on the Moon is lobate
scarps, which are characterized by horizontal compressional stress exceeding vertical stress.2 The
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lunar surface exhibits typical and distinct lobate scarps, as illustrated in Fig. 1. These landforms
generally display asymmetric ridge-like topography, often linear or arcuate in shape, with steeply
inclined cliff faces and gently sloping rear limbs. Their lengths range from tens of meters to
several kilometers, widths span tens to hundreds of meters, and elevations can reach ∼150 m.5,6

Lobate scarps represent some of the youngest landforms on the Moon. According to van der
Bogert et al.7, their formation ages support a late Copernican age (<800� 15 Ma). They typi-
cally exhibit sharp morphological expressions, lack superimposed large-diameter impact craters
(>400 m), and crosscut smaller diameter craters. These thrust faults exhibit a global distribution,
spanning all latitudes on the nearside and farside, which establishes them as the most ubiquitous
tectonic features on the Moon. Lobate scarps are predominantly located in anorthosite
highlands.8–10 Unlike nearside wrinkle ridges and graben, they generally occur outside mare-
filled basins in highland regions and are most extensively developed on the farside.2

Regarding the formation of lunar lobate scarps, previous studies suggest that the Moon origi-
nated from a collision between a Mars-sized body and the Earth.11–14 Following the magma ocean
stage, the Moon’s interior gradually cooled, leading to solidification and contraction of its liquid
outer core. This process generated horizontal compressional stresses (∼400 MPa) that acted on
the lunar crust. The crust underwent displacement along low-angle thrust faults (average dip
angle: 22.95 deg), with the upper crustal blocks overriding lower blocks, forming asymmetric
step-like scarps.15,16 Lobate scarps serve as direct evidence of global contraction driven by lunar
interior cooling. Their dominant orientations (e.g., NE–SW trends) reflect directional patterns of
regional stress fields, whereas geometric parameters (e.g., relief amplitude and displacement
magnitude) reveal mechanical properties of the lunar crust. In-depth study of lobate scarps can
unveil global or regional structural characteristics and stress states, providing critical insights into
the Moon’s internal geological evolution. Research on lunar linear structures, particularly lobate
scarps, holds significant implications for understanding the Moon’s tectonic history.15,17

Lunar remote sensing optical images are the primary data source for studying lunar tectonic
activities and evolution. Early studies on lobate scarps utilized images from the Apollo
Panoramic Camera; however, due to their limited spatial coverage, the research was confined
to equatorial regions.18 In 2010, the Lunar Reconnaissance Orbiter Camera (LROC) provided
new global high-resolution images, leading to the discovery of previously unidentified lobate
scarps in high-latitude areas (≥ 60 deg) and mapping their global spatial distribution.2,5,19

By 2015, over 3200 scarps had been identified.8

Previously, the detection of linear structures on the lunar surface primarily relied on manual
interpretation1,20,21 and semi-supervised learning methods.17,22

Lu et al.1 utilized dataset products from the China Lunar Exploration Program and high-
quality dataset products from international exploration missions to manually map and annotate
227 lobate scarps, 474 rilles, and 11,046 wrinkle ridges longer than 2.5 km using the Mollweide
projection on the ArcMap platform. Hurwitz et al.20 employed the latest acquired imagery and
topographical data to manually draw and analyze observed lunar channels using ArcMap. Nelson
et al.23 used Narrow Angle Camera (NAC) data from the LROC and ArcGIS software to digitally
map lobate scarps. The aforementioned manual mapping processes are time-consuming, labor-
intensive, inefficient, and prone to errors, largely depending on the mapper’s experience and
judgment. Typically, such studies require the mapper to have a profound understanding of

Fig. 1 (a) The red arrow points to the lobate scarp Slipher (48°14′N, 160°32′E). Source of the
image.3 (b) The green arrow points to the lobate scarp Simpelius (73.6°S, 8.76°E). Source of the
image.4 (c) Simple profile map of the lobate scarp.

Li et al.: STLDF-Net: a semantic segmentation network for lunar surface linear. . .

Journal of Applied Remote Sensing 024511-2 Apr–Jun 2025 • Vol. 19(2)



geology and planetary dynamics, resulting in a high barrier to entry. In most cases, this
method is difficult to generalize. Considering the vastness of the lunar surface, manually
detecting all linear structures from a large number of remote sensing images poses a significant
challenge for experts, and different professionals may identify varying characteristics of lunar
linear structures.

Previous studies have employed semi-supervised learning methods to detect linear structures
on the lunar surface. Ke et al.24 utilized multiscale parameters and multiresolution digital terrain
models (DTM), introducing terrain curvature to automatically extract lunar surface linear struc-
tures (including rilles and wrinkle ridges). The extraction accuracy reached a maximum value
of 0.1652 with a window size of 825 m. Peng et al.22 proposed a method combining phase
symmetry and morphological operations to detect wrinkle ridges, achieving a detection percent-
age of 90.7% at the best test points. Lou and Kang17 used a DEM slope averaging filter method to
extract lunar surface linear structures, attaining a completeness rate of 87.26%. Micheal et al.25

introduced an automatic detection method for grabens based on Hessian techniques applied to
lunar DTM, automatically identifying grabens through gradient changes and achieving a detec-
tion rate of 90%. These algorithms typically extract linear structures based on features of linear
entities, such as shape, brightness differences, and texture variations. Compared with manual
detection, these semi-automatic detection algorithms have significantly improved efficiency.
However, due to their specialized design, they often perform poorly when processing images
with complex geological information. The extraction of linear structures using these methods
is generally limited by their specialized capabilities, requiring substantial knowledge in math-
ematics, physics, geology, and planetary science. In addition, when multiple geomorphological
types coexist in the same region, the detection performance of these algorithms tends to be
relatively poor.

In recent years, artificial intelligence technology has been rapidly advancing in the field of
deep space exploration. Moghe et al.26 proposed a deep learning method utilizing semantic
segmentation to classify hazardous and safe areas from light detection and ranging (LIDAR)
scans during lunar landing phases. Leveraging semantic segmentation algorithms in deep learn-
ing enables end-to-end, pixel-wise matching to extract linear structures on the lunar surface. Yan
et al.27 proposed a linear feature extraction method combining an improved UNet++ and You
Only Look Once v5 (YOLOv5) to achieve object detection and semantic segmentation of linear
structures, attaining an intersection over union (IoU) of 0.69 on a custom dataset. Zhang et al.28

introduced a multimodal semantic segmentation method based on DeepLabv3+ to automatically
identify and detect rilles, achieving a mean intersection over union (MIoU) of 93.90% on a
custom dataset. These deep learning–based algorithms for extracting lunar surface linear struc-
tures demonstrate the clear advantages of deep learning over traditional methods in this task.
However, due to the inherent limitations of convolutional operations, convolutional neural net-
work (CNN)-based methods struggle to learn explicit global and long-term semantic information
interactions. Some classical algorithms, lacking the introduction of new concepts and improve-
ments and focusing solely on local information, have been unable to achieve satisfactory
segmentation results.

With the rapid development of the deep learning field, vision transformers (ViTs), intro-
duced by a Google team in 2020, represent models that apply transformers to image
classification.29 Semantic segmentation of images using global self-attention mechanisms has
been widely adopted. A representative model in the ViT domain is the Swin Transformer.
Swin Transformers utilize hierarchical feature maps and shifted windows to capture both local
and global contextual information, significantly improving segmentation accuracy.30 The ability
of the Swin Transformer to handle varying scales and its efficiency in processing high-resolution
images make it particularly suitable for complex segmentation tasks. Inspired by the success of
the Swin Transformer,31 researchers from the Technical University of Munich, Fudan University,
and Huawei proposed Swin-UNet—the first purely transformer-based U-shaped architecture.32

This model fully leverages the powerful capability of transformers to extract global information,
demonstrating great potential in image semantic segmentation. Li et al.33 proposed a U-Net and
transformer-based semantic segmentation network for deep space rock images, achieving MIoU
scores of 79.32% and 93.43% on two public datasets. However, directly applying Swin-UNet in
its original form may not be optimally suited for the specific task of semantic segmentation of
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lunar lobate scarps as it lacks targeted adaptations and specialized design considerations for
this unique application.

In summary, manual annotation of lunar linear structures exhibits critical limitations: (1)
heavy reliance on expert knowledge leading to subjective biases, (2) extreme time-consumption
and labor-intensiveness, and (3) prohibitively high specialization barriers. Semi-automatic detec-
tion methods, while improving efficiency, demonstrate unsatisfactory performance and poor
generalization when handling complex geological scenarios. Furthermore, existing automated
approaches lack novel conceptual improvements and dedicated optimizations specifically for
lobate scarp identification. These unresolved challenges underscore the urgent need to develop
specialized, fully automated techniques for lunar lobate scarps detection. This study focuses on
the automatic detection of lunar linear structures using lobate scarps as representative features.
We designed STLDF-Net, a deep learning network for the automatic extraction of lobate scarps
based on an improved Swin-UNet.

Our main contributions are as follows:

1. Creation of a lunar lobate scarp dataset: We have developed a lunar lobate scarp dataset,
one of the few of its kind. This dataset is based on high-resolution NAC data captured
by LROC using charge-coupled devices. It comprises 1000 manually collected contour
samples of lunar lobate scarps, providing a unique and valuable resource for studying
linear structures on the lunar surface. The scarcity of such datasets is attributed to the
complexity and time-consuming nature of data collection and processing.

2. Proposal of STLDF-Net: We propose STLDF-Net, a semantic segmentation algorithm
based on a global self-attention mechanism, designed to extract linear structures repre-
sented by lunar lobate scarps. This model demonstrates improved edge-matching capabil-
ities, enabling more accurate extraction of edge details in linear structures, particularly
lobate scarps.

The remainder of this paper is organized as follows. Section 2 introduces the selection and
creation of the dataset. Section 3 details the STLDF-Net algorithm and the significance of each
module’s design. Section 4 presents the experimental evaluation metrics, compares the proposed
algorithm with existing classical algorithms through comparative experiments, and conducts
ablation experiments, model application experiments, and model transfer experiments. Section 5
concludes our findings.

2 Study Data and Area

2.1 LRO NAC Introduction
High-resolution optical images from LROC have revealed previously undetected lobate thrust
fault scarps and associated meter-scale secondary tectonic landforms.9 This is because it is
equipped with NACs that are designed to provide 0.5 m-scale panchromatic images over a
5 km swath. LROC NAC anaglyphs are made from geometric stereo pairs (two images of the
same area on the ground, taken from different view angles under nearly the same illumination).34

These images are panchromatic (400 to 760 nm) with a pixel scale of 0.5 to 2 m, an image display
width of 5 km, and a length of 25 km.19 Due to the small size of lobate scarps, this study utilizes
NAC images for scarp detection and confirmation.

2.2 Study Area
A typical NAC image measures ∼10;000 pixels in width (east–west direction) and 52,000 pixels
in length (north–south direction), corresponding to a normal coverage area ranging from
∼5 × 26 km to 20 × 100 km. The NAC optical image data used in this study were downloaded
from NASA’s Planetary Data System, comprising a total of 39 typical NAC Raw Data Record
Products (geometrically corrected and georeferenced NAC data). These include 25 regional
images (21 named regions and 6 unnamed regions), as shown in Table 1. The resolution of the
obtained NAC images ranges from 0.8 to 5 m (the majority being 5 m per pixel), covering the
middle, high, and low latitudes of the Moon (with a greater number in the mid and low latitudes
and a few in the high latitudes).
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Table 1 Data used for creating the lobate scarp detection dataset.

Region Product name Latitude Longitude Pixel/m

Aitken NAC_ANAGLYPH_M1137772118_M1137765006 16°47′S 174°24′E 5

Aldrovandi NAC_ANAGLYPH_M1197583152_M1197569085 25°12′N 28°59′E 5

De Vries NAC_ROI_DEVRIES_LOA 17°53′S 178°23′W 1

Extension NAC_ANAGLYPH_M154169223_M154162437 48°9′N 163°40′E 5

Galvani NAC_ANAGLYPH_M1119442203_M1119420888 50°37′N 81°12′W 5

Galvani NAC_ANAGLYPH_M1104094593_M1104073160 50°37′N 81°12′W 5

Horseshoe NAC_ROI_CRSHORSELOA 18°55′N 61°30′E 1.1

Jules Verne NAC_ANAGLYPH_M103539841_M103532684 36°33′S 148°29′E 5

Jules Verne NAC_ANAGLYPH_M1100246028_M1100238883 36°40S 148°22′E 5

Jules Verne NAC_ANAGLYPH_M182552124_M182544976 35°33′S 148°47′E 5

Jules Verne NAC_ANAGLYPH_M1137943109_M1137935999 35°56′S 149°7′E 5

Jules Verne NAC_ANAGLYPH_M1212094957_M1212087924 34°53′S 148°36′E 5

Korolev NAC_ANAGLYPH_M182259815_M182245522 1°33′N 164°20′W 5

Lebedev NAC_ANAGLYPH_M1151095979_M1151088860 45°3′S 115°23′E 5

Madler NAC_ANAGLYPH_M1108082617_M1108075470 10°45′S 31°33′E 5

Mandelshtam NAC_ANAGLYPH_M191909925_M191895630 6°53′N 161°1′E 5

Mandelshtam NAC_ANAGLYPH_M161252379_M161245596 5°53′N 161°28′E 5

Mendel NAC_ANAGLYPH_M1134950382_M1134943272 49°1′S 111°14′W 5

Morse NAC_ANAGLYPH_M143425323_M143418540 18°1′N 176°42′W 5

Moscoviense NAC_ANAGLYPH_M1205084460_M1205070393 25°43′N 144°47′E 5

Oken NAC_ROI_OKENCTR_LOB 46°53′S 76°24′E 0.8

Oppenheimer NAC_ANAGLYPH_M1220047500_M1220040467 37°5′S 164°32′W 5

Oppenheimer NAC_ANAGLYPH_M151575728_M151568945 34°11′S 160°57′W 5

Racah NAC_ANAGLYPH_M1189528636_M1189521607 11°18′S 178°7′W 5

Racah NAC_ANAGLYPH_M1189528636_M1189521607 8°18′S 178°45′E 5

Seares NAC_ANAGLYPH_M169600722_M169587158 73°35′N 146°52′E 5

Serenitatis NAC_ANAGLYPH_M1190645305_M1190631250 30°56′N 10°35′E 5

Serenitatis NAC_ROI_SERENITALOA_E251N0253 25°12′N 25°26′E 1.1

Serenitatis NAC_ROI_SPACEIL_LOB_E326N0194 33°6′N 19°21′E 0.9

Tsiolkovskiy NAC_ROI_TSIOLKOVLOH_E199S1286 19°15′S 128°31′E 0.9

Tsiolkovskiy NAC_ANAGLYPH_M167370048_M167363261 19°19′S 128°36E 5

Tsiolkovskiy NAC_ANAGLYPH_M143799104_M143792320 21°30′S 126°4′E 5

Tsiolkovskiy NAC_ANAGLYPH_M1122743851_M1122736739 19°8′S 130°19′E 5

Virtanen NAC_ANAGLYPH_M158795840_M158789053 15°54′N 177°13′E 5

Unnamed NAC_ANAGLYPH_M151603560_M151596778 2°43′N 164°37′W 5

Unnamed NAC_ANAGLYPH_M134272668_M134265884 6°1′N 140°33′E 5
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2.3 Dataset Creation
After obtaining the aforementioned NAC images, they were first converted into grayscale
images. To ensure the accuracy of sample labels, we manually interpreted and annotated the
labels. Following the initial labeling, multiple manual verifications were conducted to correct
erroneous annotations, particularly around the edges, and the labeled images were then integrated
into the dataset. To prevent memory overflow and increase the number of samples, this study
employed a sliding window with a 50% overlap rate to crop the NAC images and their corre-
sponding labels, with a crop size of 512 × 512 pixels. Images without label data were automati-
cally deleted, followed by manual inspection to exclude low-quality images. The final sample
consisted of a total of 1124 patches, which were randomly divided into training and testing sets in
a ratio of 8:2.

3 Methodology
The lobate scarp detection method in this study primarily consists of the following components.
First, we introduce an overall architecture of the proposed STLDF-Net. Then, we describe
the modules designed within the model, which mainly include the long-connection Swin
Transformer residual block (LCSRB) is a feature extraction module based on the Swin
Transformer, designed to enhance the network’s ability to extract features from lunar lobate
scarps; the deformable pyramid pooling module (DPPM), which enhances the network’s feature
representation capabilities for lunar lobate scarps.; and the feature pyramid and aggregation net-
work (FPAN) module, which integrates the feature pyramid network (FPN) and path aggregation
network (PAN) to fuse multilevel features from different hierarchical layers, thereby improving
the network’s detection accuracy for lunar lobate scarps. Finally, we introduce our decoder
component.

3.1 STLDF-Net Construction
To effectively address the problem of feature extraction and recognition of lobate scarps on the
lunar surface, we designed STLDF-Net based on an encoder–decoder architecture, as shown in
Fig. 2. This is an end-to-end network model. The encoder part of STLDF-Net utilizes the encoder
from Swin-UNet as the backbone network.32 The latter employs the Swin Transformer to replace
the original U-Net structure, inheriting the advantages of both U-Net and transformers. It uses
skip connections to link the encoder and decoder, fully extracting the semantic features of the
images. There are various network architectures of the Swin Transformer, and STLDF-Net
adopts the Swin-B (base) architecture, which has a model size and computational complexity
similar to ViT-B/Dei-B.30 First, we embed the LCSRB module with residual connections, which
we designed, in each stage to prevent feature extraction loss that may be caused by directly
connected features, thereby enhancing the model’s expressive capacity and training stability.
The encoder consists of four stages, with each stage containing 2, 2, 18, and 2 Swin
Transformer blocks, respectively. In our network model, the input image size is H × W × 3,
which is divided into 4 × 4 patches through the patch partition layer, generating patch tokens
with a shape of (H/4, W/4, 48). The generated patch tokens go through the linear embedding in
stage 1. They are then input into the LCSRB module, which contains two consecutive Swin
Transformer V2 blocks, to generate tokens of (H/8, W/8, 256). Stages 2 and 3 consist of patch
merging and the LCSRB module, respectively. In patch merging, adjacent 2 × 2 patches are

Table 1 (Continued).

Region Product name Latitude Longitude Pixel/m

Unnamed NAC_ANAGLYPH_M1191769650_M1191755597 36°6′N 162°41′W 5

Unnamed NAC_ANAGLYPH_M189073069_M189044470 53°26′N 122°18′W 5

Unnamed NAC_ANAGLYPH_M141456962_M141443389 72°9′N 121°8′E 5

Unnamed NAC_ANAGLYPH_M186714150_M186685552 53°27′N 122°16′W 5
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merged into one patch, and the tokens are downsampled by a factor of ½, whereas the channel
dimension C is doubled.35 In stages 2 and 3, the shape of the tokens is (H/16, W/16, 512) and
(H/32, W/32, 1024). Stage 4 no longer performs patch merging, meaning its output feature map
size and dimensions are the same as those of stage 3. This architectural choice preserves finer
spatial details that prove particularly crucial for accurate localization and semantic segmentation
tasks, especially when dealing with small-scale linear features such as lunar lobate scarps.
Although patch merging in shallow layers helps retain detailed information for micro-terrain
analysis, its application in deeper layers captures more global contextual information suitable for
macro-structure interpretation. However, continued downsampling in deep networks risks losing
critical spatial resolution, which would significantly compromise segmentation accuracy for
precision-demanding geological features. It also ensures that high-level features remain stable,
facilitating special processing of the final layer features and benefiting the input of the final layer
features into the DPPM module for better performance. Next, we designed the DPPM module to
process the image features obtained from the fourth stage of the decoder, thereby capturing key
information in the images more precisely. Then, we incorporated the FPAN module to fuse feature
maps from different hierarchical levels, enhancing the network’s image detection capability.
Finally, the decoder module fuses semantic features at different scales and restores resolution
through convolution, batch normalization (BN), and upsampling, resulting in the predicted output.

3.2 Long-Connection Swin Transformer Residual Block
A classic Swin-UNet successfully integrates the transformer into the UNet architecture through
the use of the Swin Transformer block.32 Building upon this, we designed the LCSRB module.
The Swin Transformer blocks employed in the LCSRBmodule are composed of two consecutive
Swin Transformer blocks with different structures, one utilizingW-MSA and the other using SW-
MSA. W-MSA and SW-MSA are multihead self-attention modules with regular and shifted win-
dowing configurations, respectively. These two modules are used simultaneously and alternately,
with an even number of iterations (to ensure paired usage), thereby enhancing the cross-window
information connection. We utilize the Swin Transformer V2 architecture, which incorporates
a technique called residual post-normalization (res-post-norm), replacing the previously used
pre-normalization (pre-norm) structure,36 as shown in Fig. 3. This method relocates the layer
normalization (LN) layer from the beginning of each residual unit to the end of the multilayer
perceptron (MLP), applies the LN layer between each multi-head self-attention (MSA) and MLP
module, and introduces residual connections after each module. This approach improves the

Fig. 2 Structure of STLDF-Net.
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stability of the training process and enhances the training accuracy, making the model more
efficient in transferring information between window resolutions. Thus, the computational rep-
resentation of the Swin Transformer V2 blocks is expressed as follows:

EQ-TARGET;temp:intralink-;e001;114;515ẑl ¼ LNðW −MSAðzl−1ÞÞþ zl−1; (1)

EQ-TARGET;temp:intralink-;e002;114;479zl ¼ LNðMLPðẑlÞÞþ ẑl; (2)

EQ-TARGET;temp:intralink-;e003;114;461ẑlþ 1 ¼ LNðSW −MSAðzlÞÞþ zl; (3)

EQ-TARGET;temp:intralink-;e004;114;442zlþ 1 ¼ LNðMLPðẑlþ 1ÞÞþ ẑlþ 1; (4)

where ẑl and zl represent the input and output of the l’th block, respectively, and LN stands for
layer normalization. W-MSA and SW-MSA perform self-attention within the window but ignore
tokens outside the window, where each window only covers M ×M patches. In the experiment,
for the convenience of calculation, we set M to 4. The computation formulas for self-attention
and multihead attention are as follows:

EQ-TARGET;temp:intralink-;e005;114;375AttentionðQ;K; VÞ ¼ SoftMax

�
QKTffiffiffi

d
p þB

�
V; (5)

EQ-TARGET;temp:intralink-;e006;114;326MultiHeadðQ;K; VÞ ¼ Concatiðhead1ÞWO; (6)

where

EQ-TARGET;temp:intralink-;e007;114;307headi ¼ AttentionðQWQ
i ; KWk

i ; VW
V
i Þ; (7)

where Q;K; V ∈ RM2×d denote the query, key, and value matrices, d is the query/key dimension,
andM2 is the number of patches in a window. As the relative position along each axis lies in the
range [−Mþ 1, M − 1], we parameterize a smaller sized bias matrix B̂ ∈ Rð2M−1Þ×ð2M−1Þ, and
values in B are taken from B̂.26 T is the transpose. Wi and WO are parameter matrices.37

Building upon Swin Transformer V2 blocks, our improvement involves adding residual con-
nections with three convolutional layers, forming the LCSRB module, as shown in Fig. 4. The
residual learning framework was introduced in 2016,38 and it is a classic approach in the field of
deep learning that effectively alleviates the training burden of networks. The residual connections

Fig. 3 Two successive Swin Transformer V2 blocks (post-norm Swin Transformer block).

Fig. 4 Structure of the LCSRB.
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added in the LCSRB module not only preserve the advantages of the Swin Transformer but also
enhance the model’s expressive capacity and training stability. In addition, they allow for param-
eter and memory savings by processing feature maps progressively, thereby maintaining compu-
tational efficiency. The introduction of three convolutional operations enables the model to better
capture local spatial features, enhancing its ability to capture fine-grained features, which is
particularly crucial for handling the complex textures and edge information of linear structures
such as lunar lobate scarps. Moreover, through residual connections, the LCSRB module can
more effectively fuse features at different scales, improving the model’s performance in multi-
scale scenarios. As our backbone network based on the Swin-B architecture has more layers and
greater depth, introducing residual connections effectively improves the model’s gradient flow,
mitigating the problems of gradient vanishing or exploding in deep networks without causing
model performance degradation due to the vanishing gradient problem.

We designed a sequence consisting of three convolutional layers aimed at reducing the num-
ber of parameters and the computational burden of the model while enhancing its representa-
tional capacity. The first convolutional layer uses a 3 × 3 kernel to reduce the number of channels
from C to C∕4, where C denotes the number of channels, with the purpose of decreasing compu-
tational load while preserving important feature information. The second convolutional layer
employs a 1 × 1 kernel to maintain the number of channels at C∕4, facilitating the integration
and reorganization of feature information. The third convolutional layer utilizes a 3 × 3 kernel to
increase the number of channels from C∕4 back to C, achieving feature dimensionality expansion
and reintegrating the processed features to meet the requirements of subsequent network layers.
Between each pair of these three convolutional layers, a LeakyReLU activation function is
inserted. Unlike the standard ReLU, LeakyReLU does not completely zero out negative inputs
but instead outputs them with a small slope (0.2).39 This helps prevent neurons from permanently
deactivating during training, thereby enhancing the model’s expressive capacity. The computa-
tion formula for the LeakyReLU function is as follows:

EQ-TARGET;temp:intralink-;e008;117;424LeakyReluðxÞ ¼ maxð0; xÞþ α · minð0; xÞ: (8)

The processing procedure of the LCSRB module can be represented as follows:

EQ-TARGET;temp:intralink-;e009;117;389Fstageout ¼ FL þConv3×3ðLeakyReluðConv1×1ðLeakyReluðConv3×3ðFÞÞÞÞÞ; (9)

where Fstageout is the output after an entire stage of the encoder, FL is the feature map after being
processed by N Swin Transformer V2 blocks, Conv3×3 is the convolution operation with a 3 × 3

kernel size, and F is the input feature of each stage.

3.3 Deformable Pyramid Pooling Module
In this section, we introduce the designed DPPM module, which is applied to process the feature
maps output by the final stage of the encoder. In the fourth stage, we obtained the feature map
F ∈ R

H
32
×W
32
×1024, which is subsequently sent to the DPPM module for processing. The DPPM

module is an improved version of the pyramid pooling module,40 which is a technique used
in the field of computer vision to enhance the feature expression capabilities of CNNs. An insuf-
ficient number of branches would compromise multiscale feature capture, whereas excessive
branches may introduce redundancy. In addition, even-sized pooling kernels demonstrate supe-
rior uniformity when processing feature maps with even dimensions. Although maintaining this
four-level design paradigm in our DPPM module, we strategically adjusted the pooling kernel
sizes to {1 × 1;2 × 2;4 × 4;6 × 6} and innovatively incorporated deformable convolution to
enhance geometric deformation modeling capabilities. The architecture of the DPPM is shown
in Fig. 5.

The purpose of designing this module is to enhance the feature representation in the final
stage, enabling the model to more accurately segment targets with varying geometric shapes and
sizes, thereby improving the precision and detail of segmentation. This is particularly beneficial
for identifying linear structures such as lunar lobate scarps. The module first divides the input
features of size H ×W × C into four branches. Each branch undergoes average pooling of differ-
ent sizes to obtain features at four distinct pyramid scales, with average pooling layer sizes of
1 × 1;2 × 2;4 × 4, and 6 × 6, respectively. These are then input into deformable convolutions.
Deformable convolution41 introduces learnable offsets into the receptive field, allowing the
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convolution kernels to adapt beyond rigid square shapes to more closely match the actual shapes
of objects, as illustrated in Fig. 6.

This approach is highly effective for extracting fine branches at the ends of linear structures.
Regardless of their shape variations, the convolutional regions can consistently cover the periph-
ery of the object shapes. Next, the features processed by the 1 × 1 deformable convolution
undergo BN and ReLU operations, followed by upsampling to unify their size and dimensions.
Subsequently, features obtained from all branches are fused. Finally, a set of 3 × 3 convolutions,
BN, ReLU, and Dropout are applied, resulting in output feature maps of size H × W × C. The
processing procedure of the DPPM can be represented as follows:

EQ-TARGET;temp:intralink-;e010;114;254

Fi ¼ UpsampleðReluðBNðDeformable Conv1×1ðAvgpoolj×jðFinÞÞÞÞÞ; i ¼ 1;2; 3;4; j

¼ 1;2; 4;6; (10)

EQ-TARGET;temp:intralink-;e011;114;200 Fout ¼ DropoutðReluðBNðConv3×3ðCatðF1; F2; F3; F4ÞÞÞÞÞ; (11)

where Fin is the input to the DPPM module, Fi corresponds to the outputs of the four branches
processed by the DPPM, and Fout is the output after the entire DPPM module processing.
Avgpool refers to average pooling, BN stands for batch normalization, and Dropout refers to
the dropout layer.

3.4 Feature Pyramid Network and Path Aggregation Network Module
STLDF-Net introduces the FPN and PAN modules to construct the FPAN module, as shown in
Fig. 7, aiming to enhance the performance and efficiency of recognizing linear structures such as
lunar lobate scarps. FPN utilizes a top-down pathway and lateral connections to focus on infor-
mation transfer from higher to lower levels, integrating high-level semantic information with
low-level detailed information.42 Conversely, PAN employs a bottom-up pathway to complement

Fig. 6 (a) Standard convolution. (b)The deformable convolution.

Fig. 5 Structure of the DPPM.
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information transfer from lower to higher levels, further strengthening the connections between
features of different scales.43 This bidirectional information flow ensures that the model can
effectively capture various target features ranging from large to small. The FPAN module
combines the strengths of both FPN and PAN, enabling feature extraction and fusion at multiple
scales. This bidirectional information flow helps avoid potential information bottlenecks caused
by unidirectional paths, achieving more comprehensive information flow and more thorough
feature fusion. Particularly for small target detection, such as lobate scarps, the network model
with the FPAN module demonstrates superior performance by capturing more detailed informa-
tion on high-resolution feature maps, making the features of small targets more distinct.
Although the inclusion of the FPAN module adds additional feature fusion pathways, the shared
convolution layers and modular design make it efficient, avoiding redundant computations and
not significantly increasing computational costs or model parameters.

The processing procedure of the FPAN module is as follows: First, 1 × 1 convolutions are
applied to the feature maps of the second, third, and fourth layers to uniformly adjust their
channel numbers to a common value, reducing computational load and facilitating subsequent
fusion. Next, a bottom-up feature fusion is performed to obtain P1; P2; P3; P4. Subsequently,
1 × 1 convolutions are applied to the feature maps obtained from FPN to generate lateral
connection feature maps L1; L2; L3; L4. These convolution operations ensure that the channel
numbers of the feature maps at each layer remain consistent, facilitating subsequent fusion.
Finally, top-down feature fusion is performed, applying bilinear upsampling on the lower three
feature maps to match the height and width of the first layer for subsequent task processing. The
computation process of FPAN can be represented as follows:

EQ-TARGET;temp:intralink-;e012;117;250Ci ¼ Conv1×1ðFiÞ; i ¼ 2;3; 4; (12)

EQ-TARGET;temp:intralink-;e013;117;215P4 ¼ C4; (13)

EQ-TARGET;temp:intralink-;e014;117;197Pi ¼ UðPiþ 1ÞþCi; i ¼ 2;3; (14)

EQ-TARGET;temp:intralink-;e015;117;179P1 ¼ F1; (15)

EQ-TARGET;temp:intralink-;e016;117;161P 0
i ¼ SiðPiÞ; i ¼ 2;3; 4; (16)

EQ-TARGET;temp:intralink-;e017;117;143Li ¼ Conv1×1ðP 0
i Þ; i ¼ 1;2; 3;4; (17)

EQ-TARGET;temp:intralink-;e018;117;126Qi ¼ Li; i ¼ 1;4; (18)

EQ-TARGET;temp:intralink-;e019;117;108Qi ¼ Li þDi−1ðQi−1Þ; i ¼ 2;3; (19)

EQ-TARGET;temp:intralink-;e020;117;90 Q 0
i ¼

�
Qi; i ¼ 1

UðQiÞ; i ¼ 2;3; 4;
(20)

Fig. 7 Structure of the FPAN. (a) FPN backbone. Feature maps are indicated by blue outlines, and
thicker outlines denote semantically stronger features. (b) PAN backbone. The yellow outlines
denote the bottom-up path augmentation.
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where i denotes the level of the feature map, Ci is used to adjust the number of channels,
Fi represents the input feature map, “þ” denotes feature fusion, U represents bilinear
upsampling, Si represents smoothing convolution operations, P 0

i represents the feature map after
FPN fusion, Li represents lateral connection convolution, and Qi represents the feature map
after PAN fusion. The output of the FPAN module is a set of feature maps with uniform sizes
fQ 0

1; Q
0
2; Q

0
3; Q

0
4g. For our inputs, each feature map output by this module has dimensions of

64 × 64 × 256.

3.5 Decoder
After the feature maps are processed by the FPAN module, the four output feature maps are
concatenated along the channel dimension to generate a comprehensive feature map containing
multiple features. Then, the concatenated feature map undergoes 3 × 3 convolution, BN, and
ReLU operations to further fuse and compress feature information, producing a unified fused
feature map. Next, the fused feature map is passed through the head (which is essentially a 3 × 3
convolution layer) to generate the final output feature map. Finally, the feature map output by the
head is upsampled using bilinear interpolation to match the spatial dimensions of the original
input image, resulting in the network-processed prediction. This process can be represented as
follows:

EQ-TARGET;temp:intralink-;e021;114;520

Y 0 ¼ HeadðReLUðBNðConv3×3ðConcatðQ 0
1; Q

0
21; Q

0
3; Q

0
4ÞÞÞÞÞ; (21)

EQ-TARGET;temp:intralink-;e022;114;484 Y ¼ UpsampleðY 0; size ¼ ðH;WÞ;mode ¼ 0bilinear 0; (22)

where Q 0
1; Q

0
2; Q

0
3; Q

0
4 are the feature maps output by the FPAN module and Y is the output

prediction with the same H ×W size as the input image to STLDF-Net.

4 Experiment and Result

4.1 Implementation Details
This study utilizes the PyTorch deep learning framework to construct network models, which are
executed on workstations equipped with 24 GB random access memory (RAM) and NVIDIA
RTX A5000 graphics processing unit (GPUs). STLDF-Net is trained using the AdamWoptimizer.
Starting from the 30th epoch, the learning rate is adjusted to 10% of its previous value. The hard-
ware and software configurations of the network are presented in Table 2. During training, the
input image size is set to 512 × 512pixels.

4.2 Evaluation Metrics
To comprehensively analyze the performance of the proposed STLDF-Net, four commonly used
evaluation metrics in deep learning semantic segmentation were employed: precision, recall, IoU,
and F1-score as objective quantitative analysis indicators to assess our model’s performance in
automatically detecting lunar lobate scarps. Their computation formulas are as follows:

EQ-TARGET;temp:intralink-;e023;114;263Precision ¼ TP

TPþ FP
; (23)

EQ-TARGET;temp:intralink-;e024;114;216Recall ¼ TP

TPþ FN
; (24)

Table 2 Hardware and software configurations of the experiments.

Configuration Version

Central processing unit Intel(R) Xeon(R) Gold 6240R

GPU NVIDIA RTX A5000

GPU RAM 24GB

PyTorch 1.9.1+cuda11.1

Language Python 3.8.18
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EQ-TARGET;temp:intralink-;e025;117;724IoU ¼ TP

TPþ FPþ FN
; (25)

EQ-TARGET;temp:intralink-;e026;117;696F1 − score ¼ 2 × Precision × Recall

PrecisionþRecall
; (26)

where true positives (TP) denote the number of pixels correctly classified as lunar lobate scarps,
false positives (FP) denote the number of pixels incorrectly classified as lunar lobate scarps, and
false negatives (FN) denote the number of pixels incorrectly classified as nonlunar lobate scarps.
Precision quantifies the proportion of correctly predicted positive instances out of all instances
predicted as positive by the model. It is a measure of the model’s accuracy in identifying positive
classes. Recall, also known as sensitivity, measures the proportion of actual positive instances
that are correctly identified by the model. It reflects the model’s ability to capture all relevant
positive instances. IoU is defined as the ratio of the intersection to the union of the predicted
and ground truth values. IoU is frequently used to evaluate the alignment between segmentation
models and the actual object boundaries, with higher IoU values indicating better segmentation
accuracy. The F1-score is a key statistic in the field of image segmentation and is widely used
in deep learning as an important indicator of model performance, especially in classification
tasks, where a higher F1-score signifies stronger model performance. As there is often a trade-
off between precision and recall, both IoU and F1-score are included in the evaluation of lunar
lobate scarp detection to ensure a more comprehensive analysis.

4.3 Manual Hyperparameter Tuning for STLDF-Net
In this section, we focus on the experimental part of hyperparameter optimization for STLDF-Net
on the lunar lobate scarp dataset to determine the final hyperparameter selection. Due to the
limited number of parameters, we manually tuned the parameters and conducted the following
experiments: We performed three sets of experiments, as shown in Fig. 8. The first set controlled
the size of the epoch and batch size while varying the learning rate, as illustrated in Fig. 8(a);
the second set controlled the size of the epoch and learning rate while changing the batch size,
as shown in Fig. 8(b); the third set controlled the learning rate and batch size while varying
the epoch, as depicted in Fig. 8(c).

Learning rate: The choice of learning rate is a critical parameter that significantly impacts
the training outcomes of deep learning models. In the context of lunar lobate scarp semantic
segmentation, the learning rate directly influences the speed and magnitude of weight updates
in the network. Theoretically, an excessively small learning rate may prolong the training process
and potentially trap the model in a local optimum, preventing it from finding the global optimal
solution. Conversely, an overly large learning rate, while accelerating weight updates, may intro-
duce oscillations during training, hindering stable convergence or even causing complete failure
to converge. In our experiments, Fig. 8(a) compares model performance under five different
learning rates. To ensure a fair comparison, other hyperparameters were held constant. When
the learning rate was set to 1 × 10−6, the IoU value was the lowest (86.86%), suggesting that
the weight update steps were too small, preventing the model from reaching the optimal solution.
Increasing the learning rate to 5 × 10−6 slightly improved IoU, but the performance remained
suboptimal. At learning rates of 5 × 10−5 or 1 × 10−4, the larger update steps likely caused

Fig. 8 Comparison of hyperparameter optimization experiments. (a) Learning rate of segmenta-
tion model. (b) Batch size of segmentation model. (c) Training epoch of segmentation model.

Li et al.: STLDF-Net: a semantic segmentation network for lunar surface linear. . .

Journal of Applied Remote Sensing 024511-13 Apr–Jun 2025 • Vol. 19(2)



gradient oscillations around the global optimum, hindering precise convergence. Finally, a learn-
ing rate of 1 × 10−5 achieved the highest IoU (95.71%), striking an effective balance between
stable weight updates and avoiding excessively slow training. Thus, a learning rate of 1 × 10−5

enabled the model to optimally explore the parameter space while mitigating overfitting, deliv-
ering peak performance.

Batch size: Batch size is another crucial hyperparameter that directly affects training effi-
ciency and stability. It determines the number of samples used in each weight update. Too small a
batch size may introduce instability during training and increase iteration counts, prolonging
training time. Conversely, although larger batches reduce training duration and provide more
accurate gradient estimates, they may limit the model’s ability to explore the parameter space,
potentially trapping it in local optima. Our experiments investigated the impact of different batch
sizes on model performance [Fig. 8(b)]. With a batch size of 2, the IoU was lowest (93.78%),
likely due to unstable gradient updates. Increasing the batch size to 3 improved IoU to 94.34%,
and a further increase to 4 yielded the highest IoU (95.71%), indicating an optimal balance
between computational efficiency and gradient estimation accuracy. However, larger batch sizes
(5 and 6) led to significant IoU degradation, possibly due to reduced model generalization from
limited exposure to data diversity. These results confirm that a batch size of 4 delivers the best
performance for STLDF-Net in lunar lobate scarp segmentation.

Training epochs: The number of training epochs is another key hyperparameter requiring
careful consideration. Each epoch represents a full forward and backward pass over the training
dataset. Insufficient epochs may prevent the model from learning high-level features, whereas
excessive epochs can lead to overfitting, degrading performance on unseen data. Determining the
optimal epoch count involves balancing training duration, model complexity, and generalization
capability. In Fig. 8(c), we observed the effects of varying epoch counts. At epoch = 50, STLDF-
Net achieved peak performance for lunar lobate scarp segmentation. With only 35 epochs, IoU
was lowest (93.78%), likely due to inadequate learning opportunities. Increasing epochs to 50
maximized IoU (95.71%), striking an ideal balance between training efficiency and convergence.
However, further increasing epochs to 65 and 80 reduced IoU, likely due to overfitting. Thus,
50 epochs proved optimal for maintaining generalization while avoiding overfitting.

Based on the comprehensive experimental results, we have determined the following
optimal hyperparameter configuration for subsequent lunar lobate scarp semantic segmentation
experiments: learning rate of 1 × 10−5, batch size of 4, and 50 training epochs.

4.4 Comparative Evaluation of STLDF-Net and Other Methods
In this study, we compared STLDF-Net with five classical and two state-of-the-art semantic
segmentation models: FCN,44 U-Net,45 PSPNet,40 DeepLabV3+46 (using ResNet1838 as the
backbone), DeepLabV3+ (using ResNet101 as the backbone), TransUNet,47 and Swin-UNet.32

To ensure a fair comparison, all models were trained on the specially annotated dataset for this
study. All models used the same hyperparameters as those used in our proposed model. Table 3
presents the quantitative analysis of STLDF-Net and the seven comparison methods for lunar
lobate scarp detection, with the best results highlighted in bold and the second-best results in
italics. The experimental results indicate that STLDF-Net delivers superior performance, achiev-
ing a precision of 97.93%, a recall of 97.69%, a F1-score of 97.81%, and an IoU of 95.71%.
STLDF-Net outperforms the second-ranked Swin-UNet in both IoU and F1-score by 2.14% and
4.01%, respectively, surpasses the second-ranked TransUNet in precision by 1.95%, and exceeds
DeepLabv3+ (ResNet101) in recall by 1.78%. In summary, STLDF-Net exhibits the highest
accuracy, followed by Swin-UNet, TransUNet, DeepLabv3+ (ResNet101), DeepLabv3+
(ResNet18), PSPNet, U-Net, and FCN.

Figure 9 qualitatively presents the detection results for eight regions. These regions include
the midlatitude area on the front side of the Moon’s northern hemisphere (regions A–C), the
equatorial area on the back side of the Moon’s northern hemisphere (regions D–F), the midla-
titude area on the back side of the Moon’s northern hemisphere (region G), and the midlatitude
area on the back side of the Moon’s southern hemisphere (region H). The aim is to demonstrate
the model’s detection capability across different lunar regions. FCN is capable of detecting lunar
lobate scarps; however, its detection results exhibit significant issues. When the contrast between
the lobate scarps and the lunar background is insufficient, FCN makes notable errors, identifying
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Table 3 Results of quantitative evaluation by different methods.

Method Precision (%) Recall (%) F1-score (%) IoU (%)

FCN 82.79 89.94 86.22 75.78

U-Net 86.60 92.67 89.54 81.06

PSPNet 91.59 94.39 92.97 86.87

DeepLabv3+(ResNet18) 92.68 94.30 93.49 87.78

DeepLabv3+(ResNet101) 93.59 95.91 94.74 90.00

TransUNet 95.98 94.96 95.47 91.33

Swin-UNet 95.56 95.77 95.67 91.70

STLDF-Net 97.93 97.69 97.81 95.71

The values in bold highlight the best evaluation metrics in the comparative experiments,
whereas the values in italics indicate the second-best evaluation metrics.

Fig. 9 Detection results of different methods. (a1)–(h1) Optical images. (a2)–(h2) Ground truth.
(a3)–(h3) FCN. (a4)–(h4) U-Net. (a5)–(h5) PSPNet. (a6)–(h6) DeepLabv3+(resnet18). (a7)–(h7)
DeepLabv3+(resnet101). (a8)–(h8) TransUNet. (a9)–(h9) Swin-UNet. (a10)–(h10) STLDF-Net.
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the lunar background as lobate scarps, as shown in the red circle in Fig. 9(a3) and the blue box in
Fig. 9(b3). In addition, the model overlooks correct pixels, as seen in the blue box area in
Fig. 9(e3) and the yellow circle in Fig. 9(f3). U-Net also erroneously identifies the lunar back-
ground as lobate scarps, as shown in the red circle in Fig. 9(a4) and the blue box in Fig. 9(b4).
Furthermore, the model struggles to detect the fine tips of the lobate scarps, as seen in the blue
box area in Fig. 9(e4) and the red circle in Fig. 9(g4). DeepLabv3+(ResNet18) occasionally
overidentifies the lunar background as lobate scarps, as shown in the red circle areas in
Figs. 9(a6) and 9(d6). In addition, it performs poorly in detecting the tips of the lobate scarps,
as seen in the blue box areas in Figs. 9(b6), 9(c6), and 9(h6). DeepLabv3+(ResNet101) shows
poor smoothness in detecting lobate scarps and suffers from fragmentation, as seen in the red
circle area in Fig. 9(a7). Moreover, it struggles to distinguish the fine gaps between lobate scarps
and the lunar background, as illustrated in the yellow circle in Fig. 9(c7). Observations show that
both TransUNet and Swin-UNet avoid many of the aforementioned issues and result in fewer
misclassifications. The lobate scarps detected by these two models are relatively smooth and
complete compared with the models mentioned earlier, as shown in the red circle in Fig. 9(a8)
and the blue box areas in Figs. 9(h8) and 9(h9). In region H, these two models, along with our
STLDF-Net, achieve the best segmentation results. However, they still exhibit some potential
issues: TransUNet can detect small gaps but erroneously classifies the lunar background adjacent
to the gaps as lobate scarps, as shown in the yellow circle area in Fig. 9(c8). Swin-UNet still
suffers from detection interruptions, as seen in the red circle area in Fig. 9(d9) and the blue box
area in Fig. 9(e9). After overall observation, our designed STLDF-Net achieves the fewest
misclassifications. This model produces the best results for detecting lunar lobate scarps, with
smooth and continuous images, as seen in the red circle areas in Figs. 9(a10) and 9(d10). STLDF-
Net detects gaps, tips of lobate scarps, and fractures with the highest accuracy, as shown in the
blue box area in Fig. 9(b10), the yellow circle in Fig. 9(c10), and the red circle in Fig. 9(g10).

4.5 Evaluation of Ablation Experiments
In this study, STLDF-Net integrates three key modules: LCSRB, DPPM, and FPAN, designed to
enhance the network’s feature extraction capabilities for lobate scarps. To validate the effective-
ness of these three modules, we conducted ablation experiments. The different configurations of
the ablation experiments and their quantitative evaluations are presented in Table 4.

The quantitative results in Table 4 show that, compared with case 1, the proposed STLDF-
Net, which integrates LCSRB, DPPM, and FPAN, demonstrates superior performance metrics.
When none of the three modules are incorporated, i.e., using the baseline Swin-UNet, the
performance metrics are relatively low. When the DPPM, FPAN, and LCSRB modules are added
individually, the model’s performance improves compared with the baseline, with IoU increas-
ing by 1.15%, 1.42%, and 1.60%, and F1-score increasing by 0.62%, 0.76%, and 0.86%,

Table 4 Different cases and the quantitative evaluation for ablation experiments.

Case LCSRB DPPM FPAN Precision (%) Recall (%) F1-score(%) IoU (%)

1 × × × 95.56 95.77 95.67 91.70

2 ×
p

× 95.47 97.13 96.29 92.85

3 × ×
p

95.87 97.01 96.43 93.12

4
p

× × 96.20 96.86 96.53 93.30

5
p p

× 95.88 96.93 96.40 93.06

6 ×
p p

96.01 97.39 96.69 93.60

7
p

×
p

96.97 96.98 96.98 94.14

STLDF-Net
p p p

97.93 97.69 97.81 95.71

The values in bold highlight the best evaluation metrics in the ablation experiments, whereas the values in
italics indicate the second-best evaluation metrics. A check mark (

p
) indicates the module is present, whereas

a cross (×) indicates the module is removed.
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respectively. However, when compared with the complete model, the performance metrics
decline: IoU decreases by 2.86%, 2.59%, and 2.41%, and F1-score decreases by 1.52%,
1.38%, and 1.28%, respectively. When two of the designed modules are included simultaneously,
the performance metrics generally outperform the case where only one module is added.
Compared with the complete model, when FPAN is independently removed, IoU decreases
by 2.65% and F1-score decreases by 1.41%; when LCSRB is independently removed, IoU
decreases by 2.11% and F1-score decreases by 1.12%; and when DPPM is independently
removed, IoU decreases by 1.57% and F1-score decreases by 0.83%. The experimental results
confirm the effectiveness of the LCSRB, DPPM, and FPANmodules incorporated into this study,
indicating that the proposed model provides a robust method for effective detection of lunar
lobate scarps.

Figure 10 qualitatively presents the lobate scarp detection results from the ablation experi-
ments across five regions: the low-latitude area on the back side of the Moon’s southern hemi-
sphere (regions A-C), the equatorial area on the back side of the Moon’s northern hemisphere
(region D), and the midlatitude area on the front side of the Moon’s northern hemisphere (region
E). It is evident that in case 1, significant detection errors occur in areas with darker backgrounds,
such as the blue box region in Fig. 10(b3). This is due to the absence of the modules we designed.
When any of our three modules are incorporated, such severe errors are no longer present.
Compared with case 1, adding the DPPM or FPAN modules enables the model to capture more
complete information from the images. The results in case 2 and case 3, compared with case 1,
show more complete detections, but still result in minor missed detections, such as in the blue
box region of Fig. 10(b5) and the red box regions in Figs. 10(d4)–10(d5). When only the LCSRB
module is added, the model improves its ability to capture fine-grained features, allowing for
deeper detail extraction, as clearly seen in the blue box area in Fig. 10(e6). However, it suffers
from interruptions in detecting linear structures, as shown in the yellow circle area in Fig. 10(c6).
When any two of the aforementioned modules are incorporated, the network model’s recognition
of lobate scarps becomes more comprehensive, as seen in the red circle regions in Figs. 10(a8)–
10(a9). Nevertheless, even with two modules, the model still lacks certain feature detection capa-
bilities. This results in some missing details and an increased likelihood of detection omissions,
such as in the blue box areas of Figs. 10(b8), 10(b9), and the red box regions in Figs. 10(d7) and
10(d9). STLDF-Net demonstrates the best detection performance, effectively capturing fine
details of the lobate scarp tips. The model achieves near-perfect detection with minimal omission
and redundant detections, and the detected images are highly smooth. This represents the closest

Fig. 10 Qualitative results of ablation experiments. The optical images, ground truth, and detection
results based on case 1 to STLDF-Net are shown in (a1)–(e1), (a2)–(e2), (a3)–(e3), (a4)–(e4),
(a5)–(e5), (a6)–(e6), (a7)–(e7), (a8)–(e8), and (a9)–(e9), respectively.
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alignment with the ground truth in the experiment, as seen in the red circle region in Fig. 10(a10),
the red box in Fig. 10(d10), and the blue box in Fig. 10(e10). This exceptional performance is
largely due to the incorporation of the three modules, which enable the model to fully learn and
achieve both comprehensive global context detection and fine pixel-level classification.

The LCSRB module demonstrates superior capability in preserving feature details, whereas
the DPPM module excels at expanding the receptive field. As evidenced by cases 2 and 5 in
Table 4, when DPPM is used alone, the IoU reaches 92.85%, whereas the combined use of
LCSRB and DPPM yields an additional 0.11% improvement in IoU. This confirms that the
residual structure of LCSRB can optimize DPPM’s multiscale feature representation capability.
Qualitative evidence from region E in Fig. 10 further supports this finding: although a noticeable
gap appears in the blue box area of Fig. 10(e4), the detection of lobate scarp termini becomes
more refined after incorporating LCSRB [Fig. 10(e7)]. The FPAN module enables multiscale
feature extraction and fusion, facilitating more comprehensive information flow and enhancing
detection performance. Table 4 data reveals that without any modules (case 1), the IoU is
91.70%. This increases to 93.06% when both LCSRB and DPPM are added (case 5), and further
improves by 1.42% and 2.65%, respectively, with FPAN integration. These results demonstrate
FPAN’s significant contribution to overall detection accuracy. Qualitative validation can be
observed in region D of Fig. 10: although noticeable omissions occur in the red circle areas
of Fig. 10(d3) and Fig. 10(d7), FPAN incorporation enables complete lobate scarp detection
in Fig. 10(d5) and perfect extraction in Fig. 10(d10). In conclusion, our designed modules exhibit
mutually reinforcing capabilities, demonstrating quantifiable synergistic effects.

4.6 Model Application
Aitken crater is located on the far side of the Moon, with a diameter of ∼135 km. The crater and
its surrounding areas exhibit diverse geomorphological features and preserve relatively intact
structural characteristics. Due to the compressive and extensional stresses experienced during
early impacts and subsequent tectonic evolution, the crater’s rim and inner walls have developed
prominent fracture structures, including lobate scarps. The lobate scarps in this region vary in
scale and morphology, forming scattered band-like distributions around the inner periphery of the
crater. Aitken crater has undergone relatively limited modification since its formation, thus
retaining more pristine impact and tectonic information, making it of significant research value.
Similarly, Ansgarius, a large impact crater located on the eastern limb of the Moon’s near side
with a diameter of ∼91.42 km, has also developed lobate scarps due to stress-induced tectonic
evolution, rendering it equally valuable for research.

In this study, we utilized LRO NAC data from Aitken crater, which includes lobate scarps.
The image covers a longitudinal range of 15.59°S to 17.10°S and a latitudinal range of 174.14°E
to 174.40°E, as shown in Fig. 11(a), with a pixel resolution of 2493 × 7108. In addition, we
employed LRO NAC data from Ansgarius crater, which also includes lobate scarps. The image
spans a longitudinal range of 12.57°S to 14.80°S and a latitudinal range of 79.39°E to 80.20°E,
as depicted in Fig. 11(c), with a pixel resolution of 2487 × 7159.

Both datasets were cropped and used as input for the STLDF-Net. After processing through
STLDF-Net, the outputs were mosaicked, successfully detecting the overall spatial distribution
of lobate scarps in these two regions, as illustrated in Figs. 11(b) and 11(d). Numerous scattered
band-like lobate scarps were successfully identified. With the increasing number of lunar far-side
exploration missions, such as the Chang’e-4 landing in Von Kármán Crater, the analysis of typi-
cal lunar geomorphological and geological units has become increasingly important. Compared
with other lunar structural features, lobate scarps within impact craters have received relatively
less attention, leaving many aspects unexplored. Our detection and analysis of lobate scarps in
these regions significantly contribute to the study of linear structures on the Moon. This research
helps us understand the stress field variations, tectonic activity frequency, and deformation mech-
anisms of the lunar crust over its long-term evolution. Furthermore, it provides new observational
evidence for future studies on lunar tectonic models.

4.7 Model Migration
Mars also features lobate scarps similar to those on the Moon. These scarps were discovered earlier
on Mars, and the cliffs observed on Mars are generally an order of magnitude larger than those on
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the Moon.2,19 They are typically considered to result from reverse faulting or cliff formation caused
by the cooling and contraction of Mars’ interior. These features are widely distributed across
the Martian surface, particularly concentrated in the highland regions of Mars’ northern hemi-
sphere, areas with frequent geological activity and significant tectonic stress. The asymmetric
profiles and maximum slopes of lobate scarps on Mars are morphologically similar to those
on the Moon.5 Despite the differences in environmental and geological backgrounds between
Mars and the Moon, lobate scarps on different celestial bodies exhibit certain similarities in their
basic morphological characteristics, such as clear edges and linear or arcuate structures. This
similarity provides a basis for model transferability, motivating the use of Martian lobate scarps
to evaluate the generalization ability of STLDF-Net. Moreover, the complex geological back-
ground of Mars offers a rich testing ground for the newly designed detection model, allowing for
a thorough evaluation of the algorithm’s recognition accuracy and adaptability at various scales and
complexities.

This study uses high-resolution Mars imagery from the Mars Reconnaissance Orbiter
(MRO) HiRISE product (product ID: ESP_017171_2190) to assess the generalization perfor-
mance of STLDF-Net. The image was captured in 2010, with a central latitude of 38.795°N
and a central longitude of 2.061°E. The solar incidence angle is 42 deg, with the Sun about
48 deg above the horizon. The image was preprocessed with image enhancement and noise
removal, and the lobate scarps in the image were manually annotated to serve as the validation
dataset. The image was then cropped to 512 × 512pixels to meet the input requirements of
the model. After removing images without lobate scarps and those with poor quality, a total of
45 images of Martian lobate scarps were used for testing the model. A small subset of regions
was selected to display both the original Martian image and the STLDF-Net predicted lobate
scarp results. A comparison between the predicted lobate scarps and the annotated images was
performed, with qualitative evaluation metrics, as shown in Fig. 12. The quantitative evaluation
metrics for the test images obtained by STLDF-Net were IoU = 86.59% and F1 ¼ 92.81%,
indicating that even under the complex geological conditions of Mars, our model maintains high
detection performance. These qualitative and quantitative experiments demonstrate that STLDF-
Net exhibits strong generalization ability for identifying lobate scarps, showing high robustness
and adaptability, and highlighting the model’s practical applicability in planetary science.

Fig. 11 (a) Optical image of the LRO NAC Aitken (NAC_ANAGLYPH_M1137772118_
M1137765006) region. (b) Extraction results of lobate scarps in the Aitken region. (c) Optical image
of the LRONACAnsgarius (NAC_ANAGLYPH_M1190196360_M1190189329) region. (d) Extraction
results of lobate scarps in the Ansgarius region.
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5 Discussion
In this section, we conducted experiments on model complexity and computational efficiency
between STLDF-Net and other baseline models to provide a more comprehensive evaluation of
the proposed method. We performed model complexity experiments on eight models using the
lunar lobate scarps dataset, measuring Params (M), FLOPs (G), and computing the efficiency-
performance ratio. The experimental results are presented in Table 5 and Fig. 13.

The experimental data from the aforementioned tables and figures demonstrate that although
STLDF-Net achieves FLOPs of 87.08G, significantly lower than U-Net (218.64G) and TransUNet
(129.25G). However, its FLOPs remain higher than lightweight models such as DeepLabv3+ Res-
18 (10.57G), indicating room for optimization in extremely low-resource scenarios. Although
DeepLabv3+ (Res-18) attains the highest efficiency-performance ratio (2.16) due to its lightweight
design, STLDF-Net achieves a slightly lower efficiency-performance ratio (1.13) but delivers sub-
stantially superior absolute performance (F1 ¼ 97.81%, IoU = 95.71%), making it particularly
suitable for semantic segmentation tasks requiring stringent accuracy, such as lunar lobate scarps
detection. The parameter count of STLDF-Net is 102.41M, exceeding most baseline models,
primarily due to the introduction of the LSCRB module. However, parameter sharing strategies
mitigate exponential growth in model size while achieving significant performance gains. The

Table 5 Comparison of model efficiency (Params/FLOPs) and segmentation performance
between STLDF-Net and other methods on lunar lobate scarps.

Method Params (M) FLOPs (G) F1 (%) IoU (%)
Efficiency-performance

ratio

FCN 134.26 160.68 86.22 75.78 0.50

UNet 31.04 218.64 89.54 81.06 0.68

PSPNet 46.57 26.47 92.97 86.87 1.50

DeepLabv3+(Res-18) 16.68 10.57 93.49 87.78 2.16

DeepLabv3+(Res-101) 62.55 45.79 94.74 90.00 1.34

TransUNet 93.23 129.25 95.47 91.33 0.84

Swin-UNet 81.52 71.33 95.67 91.70 1.22

STLDF-Net 102.41 87.08 97.81 95.71 1.13

Efficiency-performance ratio = (F1 + IoU)/(Params + FLOPs), scaled by 100 for readability.

Fig. 12 Detection results of STLDF-Net in Mars testing regions.
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efficiency-performance ratio of 1.13 for STLDF-Net reflects its trade-off of higher computational
costs for enhanced accuracy. Given its substantial performance improvements, this resource over-
head is justifiable for precision-critical tasks, especially in the semantic segmentation of lunar
lobate scarps.

In summary, STLDF-Net exhibits exceptional performance on the lunar lobate scarps data-
set, highlighting its capability to capture complex terrain edges and fine-grained features. This
validates its applicability to analogous planetary geological segmentation tasks.

6 Conclusion
This paper proposes the STLDF-Net model for detecting lunar lobate scarps, which effectively
extracts semantic information from high-resolution optical images for semantic segmentation.
Two innovative modules, LCSRB and DPPM, are introduced, and the FPAN module is success-
fully incorporated. The residual connections in the LCSRB module effectively enrich the
gradient flow during the semantic feature extraction process, mitigating the vanishing gradient
problem, enhancing the stability of training deep network models, and enhancing the detection
performance of lobate scarps extraction. The DPPM module focuses on processing the semantic
features in the final stage of the encoder, enhancing the feature representation at this stage. This
module enables the model to more accurately segment targets of various shapes and sizes,
improving the network’s segmentation precision and detail representation. The introduced
FPAN module connects FPN and PAN and integrates them into the network. This module allows
for the mutual fusion and transfer of high- and low-level semantic information, and the bidi-
rectional information flow ensures that the model can effectively capture features of targets at
various scales, from large to small.

In this study, STLDF-Net is compared with seven classical or advanced semantic segmen-
tation models. The quantitative and qualitative experimental results show that STLDF-Net out-
performs the selected comparison algorithms, achieving an IoU of 95.71% and an F1-score of
97.81%. The subsequent ablation experiments provide strong evidence of the rationality and
effectiveness of incorporating the three modules. The STLDF-Net model is then applied to detect
lobate scarps in the Aitken crater region and the Ansgarius crater region, successfully identifying
the overall spatial distribution of lobate scarps in these areas. In addition, a transfer experiment is
conducted using STLDF-Net on Mars, and the results demonstrate that our model has good
generalization ability. Finally, we conducted experiments and discussions on the model complex-
ity of STLDF-Net, verifying its applicability for lunar lobate scarp segmentation tasks.

In summary, the automatic detection algorithm designed for lunar lobate scarps in this study
has been successful, offering an insight for the future development of more advanced deep learn-
ing–based lunar exploration methods.

Fig. 13 Comprehensive analysis of computational complexity and segmentation accuracy for
lunar Lobate scarps detection.
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