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Abstract

Lunar wrinkle ridges are an important stress geological structure on the Moon, which re6ect the stress state and

geological activity on the Moon. They provide important insights into the evolution of the Moon and are key

factors in6uencing future lunar activity, such as the choice of landing sites. However, automatic extraction of

lunar wrinkle ridges is a challenging task due to their complex morphology and ambiguous features. Traditional

manual extraction methods are time-consuming and labor-intensive. To achieve automated and detailed detection

of lunar wrinkle ridges, we have constructed a lunar wrinkle ridge data set, incorporating previously unused

aspect data to provide edge information, and proposed a Dual-Branch Ridge Detection Network (DBR-Net) based

on deep learning technology. This method employs a dual-branch architecture and an Attention Complementary

Feature Fusion module to address the issue of insuf:cient lunar wrinkle ridge features. Through comparisons with

the results of various deep learning approaches, it is demonstrated that the proposed method exhibits superior

detection performance. Furthermore, the trained model was applied to lunar mare regions, generating a

distribution map of lunar mare wrinkle ridges; a signi:cant linear relationship between the length and area of the

lunar wrinkle ridges was obtained through statistical analysis, and six previously unrecorded potential lunar

wrinkle ridges were detected. The proposed method upgrades the automated extraction of lunar wrinkle ridges to a

pixel-level precision and veri:es the effectiveness of DBR-Net in lunar wrinkle ridge detection.
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1. Introduction

The lunar geological structure can be broadly classi:ed into

linear or circular structures according to the geometric character-

istics (Lu et al. 2022). A lunar wrinkle ridge is one of the most

common linear structures on the lunar surface. It is a mountain

ridge formed by the extrusion of stress inside the Moon

(Schultz 2000), which is related to the stress state inside the

Moon. Studying the lunar wrinkle ridges is helpful for

understanding the stress :eld and evolution history of the Moon.

In previous studies, the methods for detecting lunar wrinkle

ridges could be classi:ed into manual visual interpretation

methods and automated methods. Yue et al. (2015) used optical

data and manual visual methods to extract lunar wrinkle ridges.

Yao & Chen (2018) visually identi:ed the lunar wrinkle ridges

on the Digital Elevation Model (DEM) data. These studies were

pioneering in determining the direction and distribution of lunar

wrinkle ridges. However, the manual extraction method is

inef:cient and labor-intensive, limiting its applicability for large-

scale identi:cation of lunar wrinkle ridges. To address these

limitations, automated extraction methods based on traditional

image processing techniques have been developed. Lou & Kang

(2018) utilized the speci:city of the lunar linear structure in

elevation and applied multiple average :ltering on the DEM data

to extract the linear structure. Micheal et al. (2014) calculated the

phase symmetry of slope information and extracted the lunar

wrinkle ridges based on DEM data. Jiang et al. (2015) employed

a block clustering algorithm based on image features for terrain

classi:cation of Chang’e-1 Charge Coupled Device (CCD)

Stereo Camera images. These traditional image processing

methods enhance extraction ef:ciency and are straightforward

to implement. Nevertheless, they primarily identify ridge lines

that indicate the general trend, failing to capture the complete

shape or edges of the lunar wrinkle ridges. Additionally, the

effectiveness of the method is highly dependent on the selection

of an appropriate threshold.

The general orientation of lunar wrinkle ridges can indeed

be determined; however, considerable potential exists for

enhanced precision in their identi:cation. From a morpholo-

gical perspective, lunar wrinkle ridges exhibit a complex and

varied topography, complicating the accurate delineation of
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their boundaries and :ne details based solely on elevation data.

Moreover, conventional image processing techniques are

substantially threshold-dependent, which impedes their ef:-

cacy in identifying the intricately undulating features char-

acteristic of the lunar wrinkle ridges. Consequently, it is

imperative to address and mitigate these limitations to improve

the accuracy and reliability of lunar wrinkle ridge identi:ca-

tion. This requires the development and application of

advanced methods that can effectively capture the nuanced

topography and reduce the threshold dependency inherent in

traditional approaches.

In the :eld of planetary image processing in astronomy,

many researchers have successfully applied deep learning

methods to achieve excellent results, enabling more precise

image segmentation and image classi:cation. For instance,

Silburt et al. (2019) applied U-Net to automatically detect

craters, while Zhang et al. (2024) utilized an improved

Deeplabv3+ model to identify lunar sinuous rilles. Peng

et al. (2023) utilized deep learning methods based on

Convolutional Neural Networks (CNNs) and transformers to

achieve :ne structure segmentation of magnetic bright point

images. Li et al. (2024) integrated CNNs and Support Vector

Machines (SVMs) to identify contaminated images in light

curve data preprocessing. These studies collectively under-

score the substantial potential of deep learning in the realm of

astronomical image processing, highlighting its capability to

enhance the accuracy and ef:ciency of data analysis in

this :eld.

Inspired by the widespread application of deep learning

techniques in astronomical image processing, this study aims

to tackle the challenges of insuf:cient detail and low ef:ciency

in recognizing lunar wrinkle ridges. To achieve this, we have

constructed a deep learning data set for lunar wrinkle ridge

detection through manual annotation. This data set encom-

passes DEM data, aspect data, and corresponding label data.

Notably, the aspect data have been identi:ed as a signi:cant

feature for delineating ridge edges. In light of this, we propose

a Dual-Branch Ridge Detection Network (DBR-Net) to

address the complexities of lunar wrinkle ridge morphology

and edge detection.

The DBR-Net architecture consists of a dual-branch encoder

that separately extracts body features from the DEM data and

edge features from the aspect data representation. To

effectively fuse these multi-source features, an Attention

Complementary Feature Fusion (ACFF) module is well-

designed and incorporated. This module ensures that the

integration of body and edge features is both robust and

complementary, enabling the network to accurately delineate

both the shape and edges of the lunar wrinkle ridges.

The proposed DBR-Net achieves a signi:cant improvement

in the resolution of ridge extraction, re:ning the representation

from coarse ridge lines to precise pixel-level edge delineation.

Experimental results validate the ef:cacy of the proposed

method, demonstrating its superior performance in lunar

wrinkle ridge detection. As a direct outcome of this research,

a detailed map of the distribution of wrinkle ridges within the

lunar mare has been generated, and six previously unrecorded

lunar wrinkle ridges being identi:ed, highlighting the potential

for new scienti:c discoveries in lunar morphology.

2. Data

The development of a high-quality and accurate data set for

lunar wrinkle ridge detection is a critical prerequisite for

training and validating deep learning models in this domain.

Previous works have been constrained by the limited

availability of such data sets, impeding progress in this :eld.

To address this issue, this study constructs a comprehensive

deep learning data set speci:cally designed for lunar wrinkle

ridge detection. The data set integrates DEM data and aspect

data, both of which are essential for capturing the topographic

and morphological characteristics of lunar wrinkle ridges. This

data set serves as a foundational resource for model training,

evaluation, and benchmarking, thereby facilitating more

accurate and reliable detection of lunar wrinkle ridges in

future research.

2.1. Study Area

Lunar wrinkle ridges are predominantly found in the lunar

mare regions. Therefore, the study area for this research is

speci:cally selected within the lunar mare. The data set was

created using data from a region spanning longitudes 90°W–

45°W and latitudes 0–60°N. This region was chosen for its

rich distribution of lunar wrinkle ridges and the availability of

DEM and aspect data. The trained model was subsequently

applied to detect lunar wrinkle ridges in a broader area,

covering longitudes 90°W–45°E and latitudes 30°S–60°N,

encompassing nearly the entire lunar mare. This extended

coverage allows for a comprehensive evaluation of the model’s

performance and the identi:cation of potential unrecorded

lunar wrinkle ridges within the lunar mare. The study area is

illustrated in Figure 1.

2.2. Data Type

The :eld of lunar terrain recognition primarily relies on two

types of data: optical imagery and DEM data. While optical

imagery offers the advantage of high resolution, the accurate

identi:cation of lunar wrinkle ridges is often hindered by

variations in illumination conditions. Qiao et al. (2021) stated

that different illumination conditions have a signi:cant impact

on the accurate recognition of lunar terrain in optical imagery,

leading to potential inaccuracies in feature extraction. In

contrast, DEM data are inherently independent of illumination

conditions and provide rich structural feature information,
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making them a more robust resource for morphological feature

analysis. DEM data not only circumvent the limitations

imposed by illumination variations but also capture critical

topographic details, such as elevation pro:les and ridge

geometries, which are essential for the precise identi:cation

of lunar wrinkle ridges. Given these advantages, this study

employs DEM data acquired from the Lunar Orbiter Laser

Altimeter (LOLA) instrument onboard the Lunar Reconnais-

sance Orbiter for lunar wrinkle ridge identi:cation.

However, in terms of representing lunar wrinkle ridges, both

optical imagery and DEM data have limitations, speci:cally

manifested in inadequate representation of edge features. The

typical feature of lunar wrinkle ridges is their gentle-to-steep

slope, which results in a blurry boundary between lunar

wrinkle ridges and surrounding landforms, signi:cantly

increasing the complexity of identi:cation. Both optical data

and DEM data face notable dif:culties in distinguishing the

edges of lunar wrinkle ridges from the surrounding landforms,

leading to previous studies being able to identify only the ridge

lines of lunar wrinkle ridges but not achieving an accurate

depiction of their overall structure. Therefore, exploring and

developing new types of data with edge representation

capabilities are of crucial importance for achieving accurate

recognition of lunar wrinkle ridges.

To capture the edges of the lunar wrinkle ridges, we

introduced aspect data. Slope is the :rst derivative of a surface

and has both magnitude and direction. Aspect is the bearing (or

azimuth) of the slope direction. Aspect is de:ned as the

compass direction of steepest downhill slope, with an angular

range from 0° to 360°. The aspect data identify the downslope

direction of the maximum rate of change in value from

each pixel to its neighboring pixels. In the aspect data, the

downslope at the edges of the lunar wrinkle ridges exhibits

similar values. Therefore, the aspect data are sensitive to the

ridge edges, which complement the main body features of the

ridges represented by DEM data.

Given these advantages, this study employs DEM data and

aspect data for lunar wrinkle ridge identi:cation.

2.3. Data Source and Processing

The DEM data we used were those presented by Barker

et al. (2016), in which the DEM co-registered the Terrain

Camera data with LOLA instrument geodetic accuracy data

called SLDEM2015. Figure 2 shows the DEM data. The

horizontal resolution of these DEM data is 512 pixels/degree
(59 m/pixel) and a typical vertical accuracy is 3–4 m. These
data are archived in the Planetary Data System (PDS) and can

be accessed via https://pds-geosciences.wustl.edu/lro/lro-l-
lola-3-rdr-v1/lrolol_1xxx/data/sldem2015/tiles/6oat_img.
The aspect data are created from the DEM data by the

Geospatial Data Abstraction Library (GDAL). GDAL is a

translator library for raster and vector geospatial data formats.

Figure 1. Study Area.

Figure 2. DEM data.
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We utilize its Python version to derive aspect data from DEM

data by invoking the gdal.DEMProcessing command.

The calculation process for aspect data (Burrough et al. 2011)

is as follows. Suppose the surface function is

( ) ( )=z f x y, , 1

where z is altitude and x and y are the coordinate axes.

Then, the slope is de:ned as

( )= =

df

dx
fSlope , 2x x

( )= =

df

dy
fSlope , 3y y

such that Slopex and Slopey are the slopes in the row (x) and

column (y) directions respectively.

The aspect is given by

( )=Aspect arctan
Slope

Slope
. 4

y

x

The aspect values represent the compass direction values (0°–

360°). Figure 3 shows the aspect data.

In digital terrain modeling, aspect data can be derived from

the DEM data using simple local operations. The aspect value

of each pixel is usually calculated from the data in a

continuously moving 3 × 3 sliding window on the map. The
sliding window used in the calculation is illustrated in

Figure 4. The slopes of pixel e5 in the row (x) and column

(y) directions can be expressed as:

( ) ( )
( )=

+ + + +e e e e e e
Slope

2 2

8
. 5x

3 6 9 1 4 7

( ) ( )
( )=

+ + + +e e e e e e
Slope

2 2

8
. 6y

7 8 9 1 2 3

The aspect value of pixel e5 can be obtained from Equation (4).

In addition, variance :ltering is used to process the aspect

data. This technique utilizes a sliding window, as illustrated in

Figure 4, and the calculation formula for variance :ltering is

shown as follows.

( )
( ¯)

( )=
=S e

e e

9
, 7

i i
5

1

9 2

where e represents the average value of the sliding window.

S(e5) is the pixel value in the aspect image after variance

:ltering. This process results in consistently lower values for

the downhill areas of lunar wrinkle ridges, and highlights

slopes in similar directions, differentiating them from the

surrounding terrain. Therefore, the edge characterization

ability of aspect data is enhanced. The aspect data after

variance :ltering are depicted in Figure 5.

2.4. Data Set

The data set is constructed by manually labeling the lunar

wrinkle ridges based on the DEM data and aspect data after

applying variance :ltering. In the process of manual labeling, Yue

et al. (2015) provide some of the explored lunar wrinkle ridge

position coordinates. In order to facilitate deep learning applica-

tions, the sliding window clipping method is used to cut the image

into 1069 blocks, each measuring 512 × 512 pixels. These blocks
are then partitioned into training and testing sets with a ratio of 8:2.

3. Method

3.1. Overview

A dual-branch lunar wrinkle ridge detection network was

utilized to detect lunar wrinkle ridges, as illustrated in Figure 6.

The model integrates semantic segmentation, an attention

mechanism, and feature-level fusion (Feng et al. 2020). Building

on the excellent performance of DeepLabV3+ (Chen et al. 2018)

in the :eld of remote sensing and the effectiveness of the Atrous

Spatial Pyramid Pooling (ASPP) module (Chen et al. 2017) for

Figure 3. Aspect data.
Figure 4. Sliding window.

Figure 5. Aspect data after variance :ltering.
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multi-scale target detection, we developed DBR-Net as an

improvement upon DeepLabV3+. The network takes DEM data

and aspect data as input, with a dual-branch feature encoder that

extracts multi-level features independently. The semantic infor-

mation from the dual-branch high-level features is fused using the

ACFF module. The rich spatial detail from the low-level features

is merged with the high-level features through skip connections.

Finally, the decoder transforms the combined feature map into

segmentation results.

3.1.1. Dual-branch Feature Encoder

The dual-branch feature encoder consists of residual blocks

and initially utilizes a dual-branch architecture to extract features

independently. It then fuses both branches to enhance feature

representations. Two Resnet-34 models, pre-trained on the

ImageNet data set, serve as the backbone network for feature

extraction. The structure of both branches is identical. ResNet-34

incorporates residual modules designed to facilitate ef:cient

learning and address the vanishing gradient problem. Moreover,

compared with the ResNet-18 and ResNet-50 variants, ResNet-

34 achieves the best balance between network performance and

computing ef:ciency. This architecture provides suf:cient feature

representation capacity to effectively capture contextual informa-

tion, while simultaneously maintaining reduced computational

and memory requirements. As proposed in ResNet (He et al.

2016), we set 3, 4, 6, 3 residual blocks at each stage. Upon

receiving the DEM and aspect data, the dual-branch encoder

extracts features separately. This process results in two distinct

types of features, each containing multiple levels. The dual-

branch encoder structure effectively captures the body features of

lunar wrinkle ridges from the DEM data and the edge features

from the aspect data.

A large number of studies have tried to fuse different feature

information, enhancing the informational richness of the

fusion results and signi:cantly advancing research in complex

visual tasks (Ebel et al. 2020; Ye et al. 2024). The multi-type

and multi-level features extracted by the dual-branch encoder

structure provide a foundation for more 6exible feature fusion

methods (Feng et al. 2020). Low-level features contain rich

spatial information, while high-level features contain semantic

information. Based on these characteristics, this study devel-

oped distinct feature fusion methods. For low-level features, an

additive approach is used to augment the information available

in the spatial dimension. For high-level features, an ACFF

module based on the attention mechanism is designed.

Figure 6. Structure of DBR-Net.
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3.1.2. Backbone of Dual-branch Feature Encoder

In order to fully extract and integrate two different features,

the encoder module is designed with a dual-branch architec-

ture. Each branch employs ResNet-34 as the backbone.

ResNet-34 incorporates residual modules designed to facilitate

ef:cient learning and address the vanishing gradient problem.

Moreover, there is a relatively shallow architecture in ResNet-

34 that effectively captures contextual information while

reducing computational and memory demands.

To tackle the training challenges of deep networks, ResNet

introduced a pivotal innovation: the residual block. The

architecture of ResNet was introduced by He et al. (2016).

The structure of a residual block is illustrated in Figure 7. The

core idea of a residual block is to introduce a Residual

Connection, which permits the input to be directly passed to

subsequent layers and summed with the output after convolu-

tional operations. The residual block adds a shortcut connec-

tion before the second ReLU activation function, transforming

the input of the activation function from the original H(X) = F

(X) to H(X) = F(X) + X. This design enables residual blocks to

learn identity mapping more easily, thereby avoiding informa-

tion loss in deep networks. As a result, it achieved signi:cant

success in image classi:cation and computer vision tasks.

In this study, we imported modules such as Resnet and
BasicBlock from torchvision.model.resnet and

used these modules to construct ResNet-34. The architecture

of the encoder is reconstructed and the dual-branch feature

encoder is constructed.

3.1.3. Attention Complementary Feature Fusion Module

ACFF module, which is based on an attention mechanism, is

designed to effectively fuse high-level semantic information,

thereby enhancing the model’s ability to distinguish between

lunar wrinkle ridges and backgrounds. The structure of the

ACFF module is shown in Figure 8. First, a maximization

method is applied to the feature maps from the DEM branch

and the aspect branch to combine the most signi:cant features

from both maps. Point-wise convolution serves as the local

channel context aggregator, exploiting point-wise channel

interactions for each spatial position. The signi:cant features

obtained after maximization emphasize the entire lunar

wrinkle ridge structure through feature mapping via point-

wise convolution and channel attention, which is based on

local spatial information. The local channel context

( ) × ×RL X C H W can be calculated as follows

( ) ( ( ( ( ( ( )))))) ( )=L X X XConv Conv Max , . 82 1 1 2

Here, γ denotes the ReLU activation function, β denotes batch

normalization, Max denotes maximization calculation, and

Conv is the 1 × 1 convolution blocks. Finally, we can

calculate the fused features ( ) × ×RF X C H W using the

provided local channel context L(X).

( ) ( ( ( )) ( ( ))) ( )=F X X L X X L XConcat , . 91 2

Here, Concat denotes the concatenation operation. ⊗ denotes

elementwise multiplication. σ denotes the sigmoid function.

The elementwise multiplication operation is used to weight the

input feature map. At deeper levels of the model, an increased

number of features enables the model to more effectively

capture the relationships among different features. Therefore,

we apply the concatenation operation in conjunction with the

weighted features to enhance the diversity of feature types.

Figure 7. Residual block structure.

Figure 8. ACFF module structure.
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4. Experiments and Results

4.1. Implementation Details

All experiments are conducted using the PyTorch deep

learning framework. The binary cross-entropy loss function is

employed, with the stochastic gradient descent (SGD)

algorithm serving as the optimizer. The initial learning rate

is set to 1 × 10−3, and a learning rate decay strategy is

adopted, reducing the rate to 0.1 times the original value every

20 epochs. The entire training cycle contains 60 epochs. All

experiments were performed on a computer equipped with an

NVIDIA RTX A5000 GPU and an Intel Xeon Gold 6126 CPU.

Table 1 presents the hyperparameter settings for DBR-Net and

the hardware environment used in this experiment.

4.2. Evaluation Metrics

To comprehensively assess the performance of the proposed

model, we employed the confusion matrix as the primary

evaluation tool. The confusion matrix, a speci:c type of

tabular layout, visually represents the correspondence between

the model’s predictions and the actual classes, particularly

suitable for binary classi:cation tasks. In this study, the binary

classi:cation task involved categorizing images into “Class A”

(lunar wrinkle ridges class) and “Class B” (background class).

The speci:c form of the confusion matrix is shown in

Table 2.

True Positives (TP) represent the number of samples

correctly predicted as Class A. False Negatives (FN) represent

the number of samples incorrectly predicted as Class B but

actually belonging to Class A. False Positives (FP) represent

the number of samples incorrectly predicted as Class A but

actually belonging to Class B. True Negatives (TN) represent

the number of samples correctly predicted as Class B.

By analyzing the confusion matrix, the commonly utilized

evaluation metrics of semantic segmentation (precision, recall,

F1-score and IoU) are utilized as the objective evaluation

metrics of this study to evaluate the lunar wrinkle ridge

detection ability of the network. Their calculation formula is as

follows

( )=

+

Precision
TP

TP FP
. 10

Precision is the proportion of actual “lunar wrinkle ridges

class” samples among all samples predicted as “lunar wrinkle

ridges class,” and it re6ects the model’s accuracy in predicting

the positive class (“lunar wrinkle ridges class”).

( )=

+

Recall
TP

TP FN
. 11

Recall is the proportion of actual “lunar wrinkle ridges class”

samples correctly predicted as “lunar wrinkle ridges class,”

and it measures the model’s ability to identify positive class

samples.

( )=
× ×

+

F1
2 precision recall

precision recall
. 12

F1-score is the harmonic mean of precision and recall, and it

is a comprehensive metric that balances the importance of

precision and recall.

( )=

+ +

IoU
TP

TP FP FN
. 13

IoU represents intersection over union of the model

predictions to the true values, which is commonly used to

measure the segmentation effectiveness of the model.

In the experiments and results section, we comprehensively

evaluate our experimental results using the aforementioned

metrics.

4.3. Comparison Experiments

In this section, we aim to verify the performance of the

proposed model and evaluate the contribution of aspect data to

the detection results. Since our method yields pixel-level

extraction results of lunar wrinkle ridges, which cannot be

compared with traditional image processing methods that only

extract ridge lines, we have chosen several mainstream deep

learning-based semantic segmentation methods for compar-

ison. The performance comparison of different data is to

explore the contribution of aspect data to the detection results,

and the performance comparison of different methods is to

verify the performance of the proposed methods. DBR-Net is

Table 1
Hyperparameter Settings

Con:guration DBR-Net

Optimizer SGD

Batch size 4

Total-train-epoch 60

Initial learning rate 1 × 10−3

Period of learning rate decay 20 epochs

Multiplicative factor of learning rate decay 0.1

Loss function Binary Cross-Entropy Loss

Operating system MS Windows 10

Graphics processing unit (GPU) NVIDIA RTX A5000 24 GB

Programming language Python 3.12

Development environment con:guration Pytorch 2.2 and CUDA 11.7

Table 2
Confusion Matrix

Predicted as Class A Predicted as Class B

Actual Class A TP (True Positives) FN (False Negatives)

Actual Class B FP (False Positives) TN (True Negatives)
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compared with other mainstream semantic segmentation

models, including FCN, Re:neNet, PSPNet, and DeepLabV3

+. The models used separate DEM data as well as combined

DEM and aspect data. The model was trained and tested using

the manually annotated lunar wrinkle ridge data set from this

study. To ensure fairness in the experiments, all experiments

were conducted under the same environmental and hardware

conditions. The corresponding performance indicators are

presented in Table 3.

4.3.1. Performance Comparison of Different Data

To assess the effectiveness of incorporating aspect data, we

utilized both only DEM data set and a combination of DEM

and aspect data as inputs for the model. In this study, four

comparison methods use a concatenation method to merge

these two types of data, creating dual-channel data for single-

branch input. The proposed model, on the other hand,

processes both data types through a dual-branch architecture.

The results indicate that the comprehensive evaluation metrics

(F1-score and IoU) for the detection outcomes of all models

improved when using the combined DEM and aspect data, as

opposed to using DEM data alone. This enhancement is

primarily attributed to the aspect data’s provision of the ridge

edge features that are absent in the DEM data. Compared to

using only DEM data, the combined use of DEM data and

aspect data demonstrates signi:cant advantages. On the one

hand, the edges of lunar wrinkle ridges and the surrounding

terrains do not exhibit large differences in elevation, rendering

the elevation features relatively inconspicuous. DEM data can

effectively represent ridges with signi:cant elevation differ-

ences but lack the ability to characterize the edges of lunar

wrinkle ridges. On the other hand, aspect data leverage the

information of continuous change rates in terrain and can

represent the gradually changing edges of lunar wrinkle ridges.

Compared to DEM data, aspect data can capture more terrain

information. By combining these two types of data, integrating

the body features and edge features of lunar wrinkle ridges can

provide more valuable spatial information for lunar wrinkle

ridge extraction.

4.3.2. Performance Comparison with Different Methods

Compared to lunar wrinkle ridge automation extraction

methods based on traditional image processing techniques,

deep learning methods enhance the extraction results from a

coarse representation of ridge lines to a pixel-level representa-

tion of lunar wrinkle ridge edges. Figure 9 qualitatively shows

the results of lunar wrinkle ridge extraction by applying

different deep learning methods across multiple scenarios,

using combined DEM data and aspect data. While all methods

successfully capture the primary structure and orientation of

the lunar wrinkle ridges, DBR-Net demonstrates superior

effectiveness in detailing the intricacies and edges of the

ridges, preserving smaller lunar wrinkle ridges and providing

more accurate ridge contours. Compared to other models, the

proposed model achieves the highest precision (89.20%),

recall (78.42%), F1-score (83.46%), and IoU (71.61%). When

compared to the original DeepLabV3+, the DBR-Net shows

an increase in precision by 0.5%, recall by 4.27%, F1-score by

2.71%, and an increase in IoU by 3.89%. These improvements

can be attributed to the dual-branch structure and the ACFF

module. These components enhance the model’s 6exibility in

addressing complementary features and enable more effective

fusion of these features through the attention mechanism. As a

result, they help the model gain a better understanding of the

data and improve overall performance.

4.4. Ablation Study

We performed relevant ablation studies to verify the

function of the component modules in our proposed DBR-

Net, as shown in Table 4. The baseline model refers to the

unmodi:ed DeeplabV3+. Compared with single-branch mod-

els, dual-branch models utilizing Add/Concat feature fusion
methods demonstrate partial improvement by simultaneously

processing both body and edge features of lunar wrinkle

ridges, yet fail to effectively integrate their differentiated

characteristics. The ACFF module effectively integrates the

two types of features, enhancing the capture of contours of the

lunar wrinkle ridges and signi:cantly improving recall and

overall metrics. The experimental results demonstrate the

necessity of using both the dual-branch structure and the

ACFF module together.

Table 3
Performance Comparison of Different Data and Methods

Method Data Precision Recall F1 IoU

(%) (%) (%) (%)

FCN DEM 85.06 71.54 77.71 63.55

DEM+Aspect 86.07 73.74 79.43 65.88

Re:neNet DEM 83.77 74.96 79.12 65.45

DEM+Aspect 84.93 75.25 79.79 66.38

PSPNet DEM 84.29 72.99 78.23 64.25

DEM+Aspect 87.01 72.87 79.31 65.82

DeepLabV3+ DEM 86.18 73.78 79.50 66.01

DEM+Aspect 88.70 74.15 80.75 67.72

Ours DEM+Aspect 89.20 78.42 83.46 71.61

The bold values are de:ned as the best performance metrics.
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4.5. Transfer Learning Experiment

Mars also exhibits wrinkle ridges similar to those found on

the Moon. Although Mars and the Moon differ in environ-

mental and geological contexts, the wrinkle ridges on these

planetary bodies share fundamental morphological character-

istics, such as linear structures and central elevated crests. This

similarity provides a basis for the transferability of models,

motivating the use of manually labeled Martian wrinkle ridges

to evaluate the generalization capability of DBR-Net.

The Martian DEM data used in this study were sourced from

the Mars HRSC MOLA Blended DEM Global 200 m v2

(Fergason et al. 2018), which combines DEM data from the

Mars Orbiter Laser Altimeter (MOLA) and the High-

Resolution Stereo Camera (HRSC) with a resolution of

200 m pixel−1. The images were normalized to reduce domain

shift, and wrinkle ridges at multiple sites on Mars were

manually annotated to serve as a validation data set. The

images were then cropped to 512 × 512 pixels to meet the

model’s input requirements, with a total of 110 Martian

wrinkle ridge images used for testing. A small subset of

regions was selected to visualize DBR-Net’s prediction results,

as shown in Figure 10. By comparing the predicted Martian

wrinkle ridges with the ground truth labels, the quantitative

evaluation metrics for the test images obtained by DBR-Net

were IoU= 62.3% and F1= 77.1%. This transfer experiment

demonstrates that, despite interplanetary geological differ-

ences, certain features remain transferable, con:rming DBR-

Net’s generalization ability and its capacity to learn ridge

morphology across planetary bodies.

5. Discussion

The trained DBR-Net was applied to detect ridges in the lunar

mare within a latitude range of 30°S to 60°N and a longitude

range of 90°W–45°E. For optimal visualization clarity and

resolution, the results presented in the main text focus on a

representative sector spanning 30°N–60°N latitude and 90°W–0°

Figure 9. Performance comparison with different methods.

Table 4
Results of Ablation Studies

Method Components Precision (%) Recall (%) F1 (%) IoU (%)

Baseline Dual-Branch Feature Fusion Method

Method1 ✓ × × 88.70 74.15 80.75 67.72

Method2 ✓ ✓ Add 88.62 75.23 81.37 68.93

Method3 ✓ ✓ Concat 88.78 75.85 81.76 69.15

DBR-Net ✓ ✓ ACFF 89.20 78.42 83.46 71.61
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longitude, as shown in Figure 11. The complete large-scale

extraction results are provided as supplementary materials,

accessible at https://zenodo.org/records/15365723.
This map delineates the outlines of lunar wrinkle ridge

edges, serving as a supplement to the existing ridge line maps

of lunar wrinkle ridges from previous studies. It provides

information on the length, width, and area of lunar wrinkle

ridges, a signi:cant linear relationship between the length and

area of the lunar crease ridges is obtained. Furthermore,

through a comparative analysis with a manually labeled data

set and existing lunar wrinkle ridge catalogs, six previously

unrecorded potential lunar wrinkle ridges were detected.

Morphological analysis and three-dimensional (3D) visualiza-

tion representations were conducted on these potential lunar

wrinkle ridges to validate and demonstrate the effectiveness of

the proposed method.

5.1. Lunar Wrinkle Ridge Detection

Based on the manually labeled lunar wrinkle ridges

provided by Yue et al. (2015), we developed a lunar wrinkle

Figure 10. Results of Martian wrinkle ridge detection. (The base map utilizes Thermal Emission Imaging System (THEMIS) infrared data from Mars Odyssey.)

Figure 11. The lunar wrinkle ridge distribution map of the lunar mare. The base image is a WAC optical image.
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ridge data set. Using the trained DBR-Net, we inferred on each

image to obtain a more re:ned extraction of lunar wrinkle

ridges. Figure 11 displays the morphological delineation and

distribution of wrinkle ridges in the lunar mare regions

identi:ed in this study. The red pixels represent the lunar

wrinkle ridges detected by our model, while the yellow

numbers identify newly detected potential lunar wrinkle

ridges. We speculate that these newly detected potential lunar

wrinkle ridges may have degraded over time due to their

advanced age, resulting in similar textural features to the

surrounding terrain in optical images, which makes them

dif:cult to identify through conventional manual visual

interpretation. In this study, by utilizing DEM data and aspect

data, we successfully detected these potential lunar wrinkle

ridges based on terrain variation information.

5.2. Morphological Analysis of Potential Lunar Wrinkle
Ridges

Table 5 provides the latitude and longitude coordinates,

length, width, and height of six newly detected potential lunar

wrinkle ridges. When compared with established lunar wrinkle

ridges, the morphological parameters of these newly detected

features fall within a reasonable range. Furthermore, we

reconstructed 3D models of these potential lunar wrinkle

ridges using DEM data and the 3D visualizations are presented

in Figure 12. From this :gure, it is evident that the potential

lunar wrinkle ridges exhibit morphological characteristics

similar to those of established lunar wrinkle ridges. The

experimental results demonstrate the effectiveness of deep

learning techniques in the identi:cation of lunar wrinkle

ridges. These :ndings not only validate the performance of the

DBR-Net model but also highlight the signi:cant potential of

deep learning in other terrain recognition domains.

5.3. Statistical Analysis of Lunar Wrinkle Ridges

Based on pixel-level identi:cation, we conducted a

systematic parametric statistical analysis of over 3000 lunar

wrinkle ridge segments across the entire lunar mare, revealing

Figure 12. 3D reconstruction results of newly detected potential lunar wrinkle ridges.

Table 5
Newly Discovered Potential Lunar Wrinkle Ridges and Their Characteristics

Number Longitude Latitude Length Width Height

(m) (m) (m)

1 51°22 07 W 20°53 45 N 8264 974 151

2 48°40 51 W 18°50 58 N 14496 1271 355

3 45°51 05 W 18°06 52 N 8887 772 149

4 45°07 24 W 19°19 33 N 11521 1524 133

5 40°01 51 W 27°05 05 N 26764 2461 223

6 05°43 31 W 45°27 32 N 11734 2663 181
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a signi:cant linear relationship between ridge length and area,

as illustrated in Figure 13.

The establishment of this quantitative relationship provides

a new scaling reference for studies of lunar tectonic evolution.

The linear correlation between length and area sheds new

light on wrinkle ridge formation mechanisms, suggesting

their development under a uni:ed lunar stress :eld. This

:nding supports dynamic models capable of explaining ridge

formation processes and aligns with conclusions by Yue et al.

(2015) that lunar wrinkle ridges form mainly through tectonic

activity, not solely from volcanic origins or pre-mare buried

structures. Previous studies on the formation mechanism of

lunar wrinkle ridges were unable to analyze parameters such as

area due to the lack of a basis for detailed characterization.

Based on pixel-level details, the linear relationship between

length and area was obtained, which not only explains the

scienti:c value of pixel-level extraction results, but also

provides a new basis for the study of the dynamics of lunar

wrinkle ridges.

6. Conclusions

This study aimed to address the challenges associated with

detecting lunar wrinkle ridges by developing a comprehensive

data set tailored for deep learning applications and proposing a

semantic segmentation model, DBR-Net. This model is

speci:cally designed to leverage DEM data and aspect data

for detecting lunar wrinkle ridges. The architecture of DBR-

Net incorporates a dual-branch structure with a complementary

feature fusion module that integrates an attention mechanism,

allowing for enhanced 6exibility feature extraction and

ef:cient fusion of features from different data sources.

In DBR-Net, body features derived from the DEM

representations are combined with edge features extracted

from the aspect representations. This fusion enables a more

precise capturing of the contours of lunar wrinkle ridges,

effectively elevating the extraction results from a coarse ridge

line representation to a :ner pixel-level edge representation.

To validate the ef:cacy of DBR-Net, it was compared with

various mainstream deep learning semantic segmentation

models through comparative experiments. These experiments

not only con:rmed the positive impact of aspect data on

detection performance but also substantiated the effectiveness

of the proposed method. DBR-Net outperforms typical

semantic segmentation models in terms of precision

(89.20%), recall (78.42%), F1-score (83.46%), and IoU

(71.61%) on the lunar wrinkle ridges data set.

The proposed method was applied to lunar mare regions,

resulting in the creation of a detailed distribution map of lunar

mare wrinkle ridges. Based on pixel-level identi:cation, we

conducted a systematic parametric statistical analysis of the

entire lunar mare wrinkle ridge segment, revealing a

signi:cant linear relationship between ridge length and area.

Figure 13. Length-to-area relationship.
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This :nding provides a new basis for studying the dynamics of

lunar wrinkle ridges. Additionally, the study identi:ed six new

potential lunar wrinkle ridges and their morphological

characteristics were also analyzed and visualized. Overall,

this study introduces DBR-Net as an effective model for lunar

wrinkle ridge detection, signi:cantly advancing the ef:ciency

and accuracy of such detections in lunar terrain analysis.
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