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Abstract—The complex and diverse geological structures on
the lunar surface serve as a direct record of its long evolution-
ary history. Comprehensively identifying and classifying these
geological structures can not only deepen our understanding of
lunar evolution but also support the planning of future lunar
exploration missions and guide the detection of lunar energy
resources. However, the diverse and intricate morphologies of
lunar geological structures, coupled with certain similarities
between different formations, make their automatic identification
and classification a significant challenge. To address this issue,
we propose a multitype lunar geological structure recognition
network based on cross-view constraints, which mines differ-
entiated feature information to enhance target identification
and discrimination capabilities. This network effectively extracts
heterogeneous and complementary features through cross-view
feature extraction constraints. By employing a discrepancy-
weighted loss function, the network focuses on regions where
discrepancies arise in the recognition results across multiple
views, thereby enhancing attention to divergent areas and
learning feature representations in complex scenarios. Addi-
tionally, multiscale contextual information aggregation combines
contextual features from different receptive fields, leveraging
surrounding terrain to enhance discriminative information for
lunar geological structures. Experimental results demonstrate
that the proposed method exhibits significant superiority in the
task of identifying and classifying multitype lunar geological
structures, with a 1.9% improvement in mean intersection over
union (mIoU).

Index Terms—Cross-view constraints, feature fusion, lunar
geological structure identification, semantic segmentation.

I. INTRODUCTION

LUNAR geological structures can be broadly categorized
into linear and circular formations based on their geo-

metric characteristics [1]. Linear structures primarily include
lunar rilles and wrinkle ridges, while circular structures are
mainly composed of impact craters. As a distinct type of linear
structure, wrinkle ridges are closely associated with compres-
sional stresses within the Moon’s interior [2]. Studying them
can reveal variations in lunar internal stress and the history
of tectonic activity [3]. The formation of lunar rilles, on the
other hand, is linked to early volcanic activity or extensional
stresses inside the Moon. Research on rilles can help trace
early magmatic processes and geological movements while
also guiding the exploration of lunar energy resources [4].
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Impact craters record specific periods of bombardment, reflect-
ing external impacts the Moon has endured throughout its
history [5]. By comprehensively identifying and classifying
these geological structures, we can systematically reconstruct
the Moon’s evolutionary trajectory from its formation to the
present, providing critical and direct evidence for refining
theories on solar system planetary evolution [6].

In previous studies, researchers have conducted systematic
identification and classification of geological structures on the
lunar surface. Harada et al. [7] employed a combination of
edge detection and Hough transform based on digital elevation
model (DEM) data to semiautomatically extract circular and
linear structures. Jiang et al. [8] proposed an algorithm based
on Chang’e-1 optical images. By extracting block-level image
features and performing cluster analysis, they achieved the
distinction between lunar highlands and maria. Neverthe-
less, it should be noted that the classification granularity of
this approach was limited to image patches, leaving room
for improvement in spatial resolution, while the classified
types remained relatively simplistic. To enhance identification
granularity, Wang et al. [9] made technical improvements
by proposing an unsupervised classification method based
on iterative self-organizing data analysis. While this study
improved identification granularity and spatial resolution, the
classification remained relatively coarse. To further refine
geological structure classification, Ghosh et al. [10] proposed
a supervised machine learning-based segmentation method for
automatic landform recognition on Mars, aiming to transform
remote sensing topographic data from orbital satellites into
semantically labeled terrain maps. The study systematically
evaluated two segmentation methods and three classification
algorithms and was validated across six test sites on Mars.

However, these studies share a common area for improve-
ment: none have fully explored and utilized the deep-level
feature information of landforms, leading to a lack of discrim-
inative information during the recognition and classification
process. In current research on multitype geological structure
identification on the lunar surface, mainstream methods pri-
marily rely on clustering segmentation and traditional machine
learning techniques. On the one hand, these methods can
achieve satisfactory recognition results for geological struc-
tures with high distinguishability, such as plains, highlands,
and impact craters. However, for complex and morphologi-
cally similar structures like wrinkle ridges and lunar rilles,
traditional approaches often suffer from high rates of misclas-
sification and missed detection. On the other hand, researchers
have developed various highly customized algorithmic for
different application scenarios, incorporating specific feature
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Fig. 1. Sliding window.

parameters for discriminative analysis. While these tailored
methods can effectively locate geological structures in specific
contexts, they still exhibit clear limitations in pixel-level
recognition accuracy and algorithmic generalization capability.
In contrast, deep learning methods demonstrate significant
advantages. By mining deep semantic information such as
contextual cues and multiscale features, they often achieve
superior predictive performance and stronger generalization
ability.

To achieve superior performance, this study employs
a cross-view deep learning network to extract differenti-
ated complementary information and contextual features,
leveraging deep semantic representations, to provide richer
discriminative information for multitype geological structure
classification.

II. STUDY AREA AND DATA

In this section, this study constructs a comprehensive deep
learning dataset for lunar geological structure using DEM data
and aspect data for model training and evaluation.

A. Study Area

The lunar mare region contains abundant geological
structures. Therefore, the study area of this research was
specifically selected within the scope of the lunar mare. The
dataset used covers the area from 90 ◦W to 45 ◦W in longitude
and 0◦ to 60 ◦N in latitude. This region was chosen due to
its rich distribution of geological structures as well as the
availability of high-quality DEM and aspect data.

B. Data Source and Preprocessing

The DEM data utilized in this study are derived from a com-
bination of LRO LOLA and the SELENE TC, with a resolution
of 512 pixels/degree (59 m/pixel) [9]. The file IDs for these
datasets are sldem2015 512 00n 30n 270 315 float and
sldem2015 512 30n 60n 270 315 float. These data are
archived in the planetary data system (PDS).

To capture the edges of lunar geological structures, we
incorporated aspect data that are sensitive to variations in
topographic slopes. The specific data processing procedure has
been described in previous work [11]. In detail, the aspect
data were generated from DEM data using the geospatial
data abstraction library (GDAL) with a sliding window as
illustrated in Fig. 1. The calculation process is as follows [12]:

Slopex =
(e3 + 2e6 + e9) − (e1 + 2e4 + e7)

8
(1)

Slopey =
(e7 + 2e8 + e9) − (e1 + 2e2 + e3)

8
(2)

aspect = arctan
�Slopey

Slopex

�
. (3)

Fig. 2. Sample of DEM data and aspect data. (a) DEM data. (b) Aspect data.
(c) Color-coding scheme for aspect.

Fig. 3. Dataset samples.

The aspect data identify the downhill direction of maximum
value change rate from each pixel to its neighboring pixels,
providing critical information about the slope orientation of
geological structures. The aspect values represent compass
directions ranging from 0◦ to 360◦. Fig. 2(a) displays the DEM
data, Fig. 2(b) displays the aspect data visualization, while Fig.
2(c) presents a chromatic wheel diagram illustrating the color-
coding scheme for these aspect values.

C. Dataset

The dataset was constructed by manually annotating lunar
geological structures based on DEM data and aspect data, as
shown in Fig. 3. To facilitate deep learning applications, the
images were segmented into 1231 patches using a sliding win-
dow cropping method, with each patch measuring 512 × 512
pixels. Each data slice consists of three components: DEM
data, aspect data, and visualized color-labeled data. Different
categories of lunar geological structures are represented by
distinct RGB colors for intuitive differentiation. The patches
were then divided into training and testing sets at an 8:2 ratio.

III. METHOD

A. Overview

This method is designed to comprehensively explore and
utilize differentiated deep semantic information. Liu et al.
[13] demonstrated in semisupervised remote sensing image
segmentation that multiview inference and cross-view mutual
learning between weakly and strongly augmented samples
can effectively alleviate model cognitive bias. Inspired by
this work, we apply this methodology to lunar geological
structure identification. To more effectively utilize differential
information and contextual cues while enhancing the model’s
discrimination capability for various geological structure
types, we propose a cross-view constrained lunar multitype
geological structure recognition network (CVL-Net). The net-
work architecture is shown in Fig. 4. Our approach employs
two subviews with similar architectures but nonshared param-
eters for mutual learning. Each subview consists of an encoder
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Fig. 4. Structure of CVL-Net.

Ei and a decoder Di, where c represents the first and second
subview, respectively.

B. Cross-View Constraints

The hypothesis that cross-view network models achieve
better performance lies in the fact that the two views capture
complementary information of the input data [13]. Considering
that the goal of a cross-view network model is to extract
distinct features from the two subviews, the outputs of the dif-
ferent encoders should differ; therefore, constraints are needed
to ensure that the two views extract view-independent features.
Aggregating information from two uncorrelated views leads
to richer feature representations, enhancing the recognition of
multitype lunar surface terrain structures.

In this study, the loss function is employed to constrain
the features extracted from the two views, thereby promoting
their divergence. Based on cosine similarity measurement, the
feature map extracted from one view is treated as a negative
sample for the feature map extracted from the other view.
A strong constraint Lαc is imposed in the feature space to
minimize the cosine similarity between the latent features f αi ,
forcing a significant difference between the features fi of the
ith view and the features f3−i of the other view. This minimizes
mutual information to avoid feature redundancy. The cross-
view constraint is formulated as follows:

Lc,i = 1+
f αi · f −α(3−i)

‖ f αi ‖× ‖ f −α(3−i)‖
. (4)

Here, ‖ ‖ denotes the L2 norm (Euclidean norm) of a vector,
i ∈ 1, 2 represents the first and second subview, respectively.
f −α(3−i) is a gradient-free copy of the feature f α(3−i), preventing
it from interfering with the parameter updates of the other
view. The coefficient 1 ensures that the value of Lc,i remains
nonnegative.

By adopting this loss function, the two views are encouraged
to capture more diverse information from the input data. As
the diversified features are effectively extracted, the model

Fig. 5. Generation of the difference weight matrix.

gains a more comprehensive and in-depth understanding of the
data, ultimately leading to significant improvements in overall
segmentation and classification accuracy.

C. Divergence-Weighted Loss

In the loss function, applying uniform weights to all pre-
dicted locations ignores the divergence between the predictions
of the two views. For easily identifiable regions, the pre-
dictions are typically consistent and reliable; whereas for
challenging regions, the predictions from the two views may
exhibit significant discrepancies due to feature complexity.
Such discrepancies often reflect uncertainty in these regions
or blind spots in the model’s learning. Therefore, assigning
higher weights to regions with prediction discrepancies is a
more rational strategy.

Specifically, a discrepancy maskM and a weight matrixW
are introduced for each image to increase the loss weighting
on discrepant regions, compelling the model to focus more
on areas where interview predictions diverge. The generation
process of M and W is illustrated in Fig. 5.

First, transform the predicted probability of each pixel into
per-image labels

ŷi,n = argmax
�
pi,n
�
. (5)

Here, pi,n denotes the predicted soft labels. Perform an
argmax operation on the predicted probability of each pixel.
Then, the binary difference mask M for the nth input image
across views is defined as follows:

M (i, j) =

(
1, if ŷ1,n (i, j) , ŷ2,n (i, j)
0, otherwise.

. (6)
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Here, ŷ1,n(i, j) denotes the label of the (i, j)th pixel in the
nth image obtained from the first view. M(i, j) indicates the
presence of prediction discrepancy at the (i, j)th position. In
this study, we assign higher weights to their cross-entropy
losses. The weight matrix is defined as

W = λ ·M+ (1 −M) . (7)

Here, λ is a parameter greater than 1, which assigns larger
weight values to discrepancy regions.

The cross-entropy loss can be rewritten as

Ls =
1
N

NX
n=1

1
2

2X
i=1

1
H ×W

H×WX
n=1

W`CE
�
pi,n, yi,n

�
(8)

where `CE denotes the cross-entropy loss function, N,H,W
represent the number of channels, height, and width of a
feature map, respectively.

In the new training loss function, we introduce a
discrepancy-aware weighting mechanism that applies a larger
weight parameter λ to regions with cross-view prediction
inconsistencies. This design aims to enhance penalty on diver-
gent regions, directing the model to focus more on areas with
prediction discrepancies.

D. Multiscale Contextual Information Aggregation

This study performs aggregation of multiscale contextual
information. This provides rich multiscale contextual infor-
mation for identifying lunar surface geological structure types,
thereby enhancing the model’s capability to understand lunar
geological formations. Specifically, the high-resolution fea-
ture maps in the encoder are first processed with dilated
convolutions of different dilation rates to extract features at
different scales while maintaining the same dimensions as
the decoder feature maps. Then, these feature maps are fused
with the decoder feature maps through skip connections. The
mathematical expression of this process can be constructed as
follows:

Fdili = σ
�
Cri (Fencoder;Wi)

�
(9)

Ffused = φ
�
Conv

�
Fdil1 , Fdil2 , . . . ,Fdiln

�
, Fdec

�
(10)

where Fencoder denotes the feature map from the encoder stage,
Fdili represents the intermediate feature map, Fdec corresponds
to the feature at the corresponding level in the decoder, Cri

refers to the dilated convolution operation with a dilation rate
of r,Wi represents the weight parameters of the convolution,
and σ denotes a nonlinear activation function. Ffused denotes
the resulting feature map after fusion.

IV. EXPERIMENTS

A. Evaluation Metrics

To comprehensively evaluate the performance of the
proposed lunar multitype geological structure classification
method, this study adopts commonly used semantic segmenta-
tion evaluation metrics: Precision, recall, F1-score, and mean
intersection over union (mIoU) as objective evaluation criteria.
Their calculation formulas are as follows:

Precision =
TP

TP + FP
(11)

Fig. 6. Performance comparison of different methods.

TABLE I
LUNAR SURFACE GEOLOGICAL STRUCTURES RECOGNITION RESULTS

TABLE II
IOU METRICS FOR DIFFERENT GEOLOGICAL STRUCTURE TYPES

Recall =
TP

TP + FN
(12)

F1-score =
2× Precision× Recall

Precision + Recall
(13)

mIoU =
1
n

nX
i=1

TPi

TPi+FPi+FNi
. (14)

Among them, true positive (TP) represents the number of
positive samples that are correctly predicted as positive by the
model. True negative (TN) represents the number of negative
samples that are correctly predicted as negative. False positive
(FP) represents the number of negative samples that are incor-
rectly predicted as positive. False negative (FN) represents the
number of positive samples that are incorrectly predicted as
negative. Here, n represents the number of categories.

B. Comparison Experiments and Ablation Experiments

To validate the effectiveness and superiority of the proposed
cross-view constrained lunar multitype geological structure
identification model, this section conducts comparative exper-
iments with several high-performance deep learning semantic
segmentation models, including FCN [14], PSPNet [15], and
DeeplabV3+ [16] and CrossMatch [13].

All comparison models were trained and tested using dual-
channel data composed of DEM and aspect data concatenated
together, while the proposed model separately inputs DEM
data and aspect data into two subviews to fully leverage cross-
view constraints for extracting differential information. Fig. 6
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TABLE III
QUANTITATIVE EVALUATION OF ABLATION EXPERIMENTS

qualitatively demonstrates the identification and classification
results of different models for lunar multitype geological
structures across various scenarios. Table I presents the com-
parative results of various performance metrics achieved by
each model on the lunar multitype geological structure dataset.
Table II presents the IoU metrics for each individual geological
structure type.

1) Qualitative Analysis: Qualitative analysis of the predic-
tion results from various models reveals the following findings.

1) All network models achieved satisfactory detection per-
formance for lunar rilles, owing to their distinct elevation
characteristics and consistent U-shaped morphology.

2) All five models demonstrate competent detection perfor-
mance for fresh impact craters. Notably, the yellow bounding
boxes in Fig. 6 highlight misclassification cases occur-
ring during the identification process. When dealing with
degraded craters, the fractured crater walls and degraded floor
topography characteristics lead to disappearance of elevation
differences between interior and exterior, causing the loss
of typical crater features consequently. In these cases, the
degraded crater walls become morphologically similar to wrin-
kle ridges and are difficult to distinguish. CVL-Net shows
significant advantages in classification performance by extract-
ing discriminative information from the two data modalities
and incorporating multiscale contextual information.

3) Due to the undulating and complex elevation variations
characteristic of lunar wrinkle ridges, significant discrepancies
were observed in the prediction results across different models.
In contrast, CVL-Net outperformed all comparative models
by employing cross-view constraints to more effectively cap-
ture discriminative elevation semantics and slope orientation
features, consequently achieving superior performance in the
identification and classification of wrinkle ridges, lunar rilles,
and impact craters.

2) Quantitative Analysis: Quantitative analysis of the pre-
diction results of different geological structure types through
different models reveals that in terms of overall performance,
the four evaluation indicators of CVL-Net perform the best, as
shown in Table I. In the lunar stream and fresh crater detection
missions, due to their distinct features, the detection effects of
these five models were roughly the same. In the detection of
crease ridges, the advantage of CVL-Net is the most obvious.
Its detection performance is improved by 5.1, 3.3, 2.5, and 1.9
percentage points, respectively, compared with the other four
models as shown in Table II.

Ablation studies were conducted to validate the essential
contribution of each proposed component, with the results
summarized in Table III. The results conclusively demonstrate

that each proposed component contributes positively and indis-
pensably to the final performance.

V. CONCLUSION

To address the current challenges in identifying and clas-
sifying multitype geological structures on the lunar surface,
this study proposes a cross-view lunar geological structure
recognition method. By leveraging cross-view constraints,
the deep learning model significantly enhances its ability
to interpret different types of data. A discrepancy-weighted
loss function guides the model to focus more on the differ-
ences between multiview predictions. Additionally, multiscale
context aggregation integrates contextual features at various
scales, providing more comprehensive evidence for determin-
ing geological structure types. The proposed method achieves
the identification of lunar wrinkle ridges, lunar rilles, and
craters, improving F1-score and mIoU by 2.9% and 1.9%,
respectively. In the future, a higher resolution data will be
used to improve the accuracy and generalization of identifying
lunar geographical features.

REFERENCES

[1] T. Lu et al., “The 1: 2,500,000-scale global tectonic map of the Moon,”
Sci. Bull., vol. 67, no. 19, pp. 1962–1966, Aug. 2022.

[2] H. D. Tjia, “Lunar wrinkle ridges indicative of strike-slip faulting,”
Geological Soc. Amer. Bull., vol. 81, no. 10, pp. 3095–3100, 1970.

[3] R. A. Schultz, “Localization of bedding plane slip and backthrust
faults above blind thrust faults: Keys to wrinkle ridge structure,”
J. Geophys. Res., Planets, vol. 105, no. E5, pp. 12035–12052,
May 2000.

[4] L. M. Pigue, K. A. Bennett, B. H. N. Horgan, and L. R. Gaddis,
“Relationship between explosive and effusive volcanism in the montes
apenninus region of the Moon,” J. Geophys. Res., Planets, vol. 128,
no. 11, pp. –1, Nov. 2023, Art. no. e2023JE007861.
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